Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward Emmott is active.

Publication


Featured researches published by Edward Emmott.


EMBO Reports | 2009

Nucleolar targeting: the hub of the matter

Edward Emmott; Julian A. Hiscox

The nucleolus is a dynamic structure that has roles in various processes, from ribosome biogenesis to regulation of the cell cycle and the cellular stress response. Such functions are frequently mediated by the sequestration or release of nucleolar proteins. Our understanding of protein targeting to the nucleolus is much less complete than our knowledge of membrane‐spanning translocation systems—such as those involved in nuclear targeting—and the experimental evidence reveals that few parallels exist with these better‐characterized systems. Here, we discuss the current understanding of nucleolar targeting, explore the types of sequence that control the localization of a protein to the nucleolus, and speculate that certain subsets of nucleolar proteins might act as hub proteins that are able to bind to multiple protein targets. In parallel to other subnuclear structures, such as PML bodies, the proteins that are involved in the formation and maintenance of the nucleolus are inexorably linked to nucleolar trafficking.


Molecular & Cellular Proteomics | 2010

Quantitative Proteomic Analysis of A549 Cells Infected with Human Respiratory Syncytial Virus

Diane C. Munday; Edward Emmott; Rebecca Surtees; Charles-Hugues Lardeau; Weining Wu; W. Paul Duprex; Brian K. Dove; John N. Barr; Julian A. Hiscox

Human respiratory syncytial virus (HRSV) is a major cause of pediatric lower respiratory tract disease to which there is no vaccine or efficacious chemotherapeutic strategy. Although RNA synthesis and virus assembly occur in the cytoplasm, HRSV is known to induce nuclear responses in the host cell as replication alters global gene expression. Quantitative proteomics was used to take an unbiased overview of the protein changes in transformed human alveolar basal epithelial cells infected with HRSV. Underpinning this was the use of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS, which allowed the direct and simultaneous identification and quantification of both cellular and viral proteins. To reduce sample complexity and increase data return on potential protein localization, cells were fractionated into nuclear and cytoplasmic extracts. This resulted in the identification of 1,140 cellular proteins and six viral proteins. The proteomics data were analyzed using Ingenuity Pathways Analysis to identify defined canonical pathways and functional groupings. Selected data were validated using Western blot, direct and indirect immunofluorescence confocal microscopy, and functional assays. The study served to validate and expand upon known HRSV-host cell interactions, including those associated with the antiviral response and alterations in subnuclear structures such as the nucleolus and ND10 (promyelocytic leukemia bodies). In addition, novel changes were observed in mitochondrial proteins and functions, cell cycle regulatory molecules, nuclear pore complex proteins and nucleocytoplasmic trafficking proteins. These data shed light into how the cell is potentially altered to create conditions more favorable for infection. Additionally, the study highlights the application and advantage of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS for the analysis of virus-host interactions.


Molecular & Cellular Proteomics | 2010

Quantitative Proteomics Using Stable Isotope Labeling with Amino Acids in Cell Culture Reveals Changes in the Cytoplasmic, Nuclear, and Nucleolar Proteomes in Vero Cells Infected with the Coronavirus Infectious Bronchitis Virus

Edward Emmott; Mark A. Rodgers; Andrew Macdonald; Sarah McCrory; Paul Ajuh; Julian A. Hiscox

Virus-host interactions involve complex interplay between viral and host factors, rendering them an ideal target for proteomic analysis. Here we detail a high throughput quantitative proteomics analysis of Vero cells infected with the coronavirus infectious bronchitis virus (IBV), a positive strand RNA virus that replicates in the cytoplasm. Stable isotope labeling with amino acids in cell culture (SILAC) was used in conjunction with LC-MS/MS to identify and quantify 1830 cellular and two viral proteins from IBV-infected cells. Fractionation of cells into cytoplasmic, nuclear, and nucleolar extracts was used to reduce sample complexity and provide information on the trafficking of proteins between the different compartments. Each fraction showed a proportion of proteins exhibiting ≥2-fold changes in abundance. Ingenuity Pathway Analysis revealed that proteins that changed in response to infection could be grouped into different functional categories. These included proteins regulated by NF-κB- and AP-1-dependent pathways and proteins involved in the cytoskeleton and molecular motors. A luciferase-based reporter gene assay was used to validate the up-regulation of AP-1- and NF-κB-dependent transcription in IBV-infected cells and confirmed using immunofluorescence. Immunofluorescence was used to validate changes in the subcellular localization of vimentin and myosin VI in IBV-infected cells. The proteomics analysis also confirmed the presence of the viral nucleocapsid protein as localizing in the cytoplasm, nucleus, and nucleolus and the viral membrane protein in the cytoplasmic fraction. This research is the first application of SILAC to study total host cell proteome changes in response to positive sense RNA virus infection and illustrates the versatility of this technique as applied to infectious disease research.


Journal of Proteome Research | 2010

Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus-infected cells

Edward Emmott; Helen Wise; Eva M. Loucaides; David A. Matthews; Paul Digard; Julian A. Hiscox

Influenza A virus (IAV) is a major human pathogen whose genotypic diversity results in unpredictable pandemics and epidemics. Interaction with the cell nucleus is essential to IAV infection, allowing recruitment of cellular components to facilitate virus replication. Viral proteins are also targeted to the nucleolus, a subnuclear structure involved in ribosomal biogenesis, RNA maturation, stress response, and control of cell growth, but the functional consequences of this are unclear. We took an unbiased approach to studying IAV-nucleolar interactions by using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with LC-MS/MS to quantify changes in the nucleolar proteome following infection with A/PR/8/34 (H1N1) and A/Udorn/72 (H3N2) strains of the virus. Only a minority of nucleolar proteins showed significant changes in abundance after infection; these alterations were mostly different between the two strains but could be validated by confocal microscopy of infected cells. Many of the affected proteins comprised functional groupings, including components of ribonuclease P, RNA polymerase I, the MLL1 histone methyltransferase complex, as well as nuclear paraspeckles and the RNA editing apparatus. This, as well as comparison with other viruses that cause changes in the nucleolar proteome, suggests that IAV targets specific nucleolar pathways.


Proteomics | 2012

Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes

Diane C. Munday; Rebecca Surtees; Edward Emmott; Brian K. Dove; Paul Digard; John N. Barr; Adrian Whitehouse; David A. Matthews; Julian A. Hiscox

Viruses continue to pose some of the greatest threats to human and animal health, and food security worldwide. Therefore, new approaches are required to increase our understanding of virus‐host cell interactions and subsequently design more effective therapeutic countermeasures. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture (SILAC), coupled to LC‐MS/MS and bioinformatic analysis, is providing an excellent resource for studying host cell proteomes and can readily be applied for the study of virus infection. Here, we review this approach and discuss how virus‐host cell interactions can best be studied, what is realistically feasible, and the potential limitations. For example, sub‐cellular fractionation can reduce sample complexity for LC‐MS/MS, increase data return and provide information regarding protein trafficking between different cellular compartments. The key to successful quantitative proteomics combines good experimental design and appropriate sample preparation with statistical analysis and validation of the MS data through the use of independent techniques and functional analysis. The annotation of the human genome and the increasing availability of biological reagents such as antibodies, provide the optimum parameters for studying viruses that infect humans, in human cell lines. SILAC‐based quantitative proteomics can also be used to study the interactome of viral proteins with the host cell. Coupling proteomic studies with global transcriptomic and RNA depletion experiments will provide great insights into the complexity of the infection process, and potentially reveal new antiviral targets.


Future Microbiology | 2013

Progress towards the prevention and treatment of norovirus infections.

Armando Arias; Edward Emmott; Surender Vashist; Ian Goodfellow

Noroviruses are now recognized as the major cause of acute gastroenteritis in the developed world, yet our ability to prevent and control infection is limited. Recent work has highlighted that, while typically an acute infection in the population, immunocompromised patients often experience long-term infections that may last many years. This cohort of patients and those regularly exposed to infectious material, for example, care workers and others, would benefit greatly from the development of a vaccine or antiviral therapy. While a licensed vaccine or antiviral has yet to be developed, work over the past 10 years in this area has intensified and trials with a vaccine candidate have proven promising. Numerous antiviral targets and small molecule inhibitors that have efficacy in cell culture have now been identified; however, further studies in this area are required in order to make these suitable for clinical use.


Current protocols in microbiology | 2014

Murine Norovirus: Propagation, Quantification and Genetic Manipulation

Seungmin Hwang; Bader Alhatlani; Armando Arias; Sarah Caddy; Constantina Christodoulou; Juliana Bragazzi Cunha; Edward Emmott; Marta J. Gonzalez-Hernandez; Abimbola O. Kolawole; Jia Lu; Christine M. Rippinger; Frédéric Sorgeloos; Lucy Thorne; Surender Vashist; Ian Goodfellow; Christiane E. Wobus

Murine norovirus (MNV) is a positive‐sense, plus‐stranded RNA virus in the Caliciviridae family. It is the most common pathogen in biomedical research colonies. MNV is also related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Like the human noroviruses, MNV is an enteric virus that replicates in the intestine and is transmitted by the fecal‐oral route. MNV replicates in murine macrophages and dendritic cells in cells in culture and in the murine host. This virus is often used to study mechanisms in norovirus biology, because human noroviruses are refractory to growth in cell culture. MNV combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Herein, we describe a panel of techniques that are commonly used to study MNV biology. Curr. Protoc. Microbiol 33:15K.2.1‐15K.2.61.


Journal of Virology | 2013

The Cellular Interactome of the Coronavirus Infectious Bronchitis Virus Nucleocapsid Protein and Functional Implications for Virus Biology

Edward Emmott; Diane C. Munday; Erica Bickerton; Paul Britton; Mark A. Rodgers; Adrian Whitehouse; En-Min Zhou; Julian A. Hiscox

ABSTRACT The coronavirus nucleocapsid (N) protein plays a multifunctional role in the virus life cycle, from regulation of replication and transcription and genome packaging to modulation of host cell processes. These functions are likely to be facilitated by interactions with host cell proteins. The potential interactome of the infectious bronchitis virus (IBV) N protein was mapped using stable isotope labeling with amino acids in cell culture (SILAC) coupled to a green fluorescent protein-nanotrap pulldown methodology and liquid chromatography-tandem mass spectrometry. The addition of the SILAC label allowed discrimination of proteins that were likely to specifically bind to the N protein over background binding. Overall, 142 cellular proteins were selected as potentially binding to the N protein, many as part of larger possible complexes. These included ribosomal proteins, nucleolar proteins, translation initiation factors, helicases, and hnRNPs. The association of selected cellular proteins with IBV N protein was confirmed by immunoblotting, cosedimentation, and confocal microscopy. Further, the localization of selected proteins in IBV-infected cells as well as their activity during virus infection was assessed by small interfering RNA-mediated depletion, demonstrating the functional importance of cellular proteins in the biology of IBV. This interactome not only confirms previous observations made with other coronavirus and IBV N proteins with both overexpressed proteins and infectious virus but also provides novel data that can be exploited to understand the interaction between the virus and the host cell.


Journal of General Virology | 2009

Adenovirus type 5 E4 Orf3 protein targets promyelocytic leukaemia (PML) protein nuclear domains for disruption via a sequence in PML isoform II that is predicted as a protein interaction site by bioinformatic analysis

Keith N. Leppard; Edward Emmott; Marc S. Cortese; Tina Rich

Human adenovirus type 5 infection causes the disruption of structures in the cell nucleus termed promyelocytic leukaemia (PML) protein nuclear domains or ND10, which contain the PML protein as a critical component. This disruption is achieved through the action of the viral E4 Orf3 protein, which forms track-like nuclear structures that associate with the PML protein. This association is mediated by a direct interaction of Orf3 with a specific PML isoform, PMLII. We show here that the Orf3 interaction properties of PMLII are conferred by a 40 aa residue segment of the unique C-terminal domain of the protein. This segment was sufficient to confer interaction on a heterologous protein. The analysis was informed by prior application of a bioinformatic tool for the prediction of potential protein interaction sites within unstructured protein sequences (predictors of naturally disordered region analysis; PONDR). This tool predicted three potential molecular recognition elements (MoRE) within the C-terminal domain of PMLII, one of which was found to form the core of the Orf3 interaction site, thus demonstrating the utility of this approach. The sequence of the mapped Orf3-binding site on PML protein was found to be relatively poorly conserved across other species; however, the overall organization of MoREs within unstructured sequence was retained, suggesting the potential for conservation of functional interactions.


Virology | 2008

Viral nucleolar localisation signals determine dynamic trafficking within the nucleolus

Edward Emmott; Brian K. Dove; Gareth J. Howell; Lucy A. Chappell; Mark L. Reed; James R. Boyne; Jae-Hwan You; Gavin Brooks; Adrian Whitehouse; Julian A. Hiscox

Abstract Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.

Collaboration


Dive into the Edward Emmott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian K. Dove

Health Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Caddy

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Smielewska

Cambridge University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge