Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa O. Roberts is active.

Publication


Featured researches published by Lisa O. Roberts.


EMBO Reports | 2005

Calicivirus translation initiation requires an interaction between VPg and eIF4E

Ian G. Goodfellow; Yasmin Chaudhry; Ioanna Gioldasi; Andreas Gerondopoulos; Alessandro Natoni; Louisette Labrie; Jean-François Laliberté; Lisa O. Roberts

Unlike other positive‐stranded RNA viruses that use either a 5′‐cap structure or an internal ribosome entry site to direct translation of their messenger RNA, calicivirus translation is dependent on the presence of a protein covalently linked to the 5′ end of the viral genome (VPg). We have shown a direct interaction of the calicivirus VPg with the cap‐binding protein eIF4E. This interaction is required for calicivirus mRNA translation, as sequestration of eIF4E by 4E‐BP1 inhibits translation. Functional analysis has shown that VPg does not interfere with the interaction between eIF4E and the cap structure or 4E‐BP1, suggesting that VPg binds to eIF4E at a different site from both cap and 4E‐BP1. This work lends support to the idea that calicivirus VPg acts as a novel ‘cap substitute’ during initiation of translation on virus mRNA.


Journal of Biological Chemistry | 2006

Caliciviruses Differ in Their Functional Requirements for eIF4F Components

Yasmin Chaudhry; Arabinda Nayak; Marie-Eve Bordeleau; Junichi Tanaka; Jerry Pelletier; Graham J. Belsham; Lisa O. Roberts; Ian Goodfellow

Two classes of viruses, namely members of the Potyviridae and Caliciviridae, use a novel mechanism for the initiation of protein synthesis that involves the interaction of translation initiation factors with a viral protein covalently linked to the viral RNA, known as VPg. The calicivirus VPg proteins can interact directly with the initiation factors eIF4E and eIF3. Translation initiation on feline calicivirus (FCV) RNA requires eIF4E because it is inhibited by recombinant 4E-BP1. However, to date, there have been no functional studies carried out with respect to norovirus translation initiation, because of a lack of a suitable source of VPg-linked viral RNA. We have now used the recently identified murine norovirus (MNV) as a model system for norovirus translation and have extended our previous studies with FCV RNA to examine the role of the other eIF4F components in translation initiation. We now demonstrate that, as with FCV, MNV VPg interacts directly with eIF4E, although, unlike FCV RNA, translation of MNV RNA is not sensitive to 4E-BP1, eIF4E depletion, or foot-and-mouth disease virus Lb protease-mediated cleavage of eIF4G. We also demonstrate that both FCV and MNV RNA translation require the RNA helicase component of the eIF4F complex, namely eIF4A, because translation was sensitive (albeit to different degrees) to a dominant negative form and to a small molecule inhibitor of eIF4A (hippuristanol). These results suggest that calicivirus RNAs differ with respect to their requirements for the components of the eIF4F translation initiation complex.


RNA | 1998

Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins.

Lisa O. Roberts; Rachael A. Seamons; Graham J. Belsham

The ability of different picornavirus internal ribosome entry site (IRES) elements to direct initiation of protein synthesis has been assayed in different cell lines in the presence and absence of viral proteases that inhibit cap-dependent protein synthesis. Reporter plasmids that express dicistronic mRNAs, containing different IRES elements, with the general structure CAT/IRES/LUC, have been assayed. In each plasmid, the CAT sequence encodes chloramphenicol acetyl transferase and the LUC sequence encodes luciferase. The poliovirus (PV) 2A protease and the foot-and-mouth disease virus (FMDV) Lb protease induce the cleavage of the translation initiation factor elF4G and hence inhibit the activity of the cap-binding complex, elF4F. In human osteosarcoma (HTK-143) cells, each of the various IRES elements functioned efficiently. In these cells, the co-expression of the viral proteases severely inhibited the expression of CAT, but the proteases had little effect on the activities of the various IRES elements. In contrast, in baby hamster kidney (BHK) cells, the efficiencies of the different IRES elements varied significantly, whereas, in normal rat kidney (NRK) cells, each of the IRES elements was relatively inefficient. In both BHK and NRK cells, the activities of those IRES elements that functioned inefficiently were strongly stimulated by the co-expression of the PV 2A or FMDV Lb proteases. This stimulation was independent of the loss of cap-dependent protein synthesis and was not achieved by the co-expression of the C-terminal fragment of elF4G. The results suggest that the PV 2A and FMDV Lb proteases induce the cleavage of another cellular protein, in addition to elF4G, which influences IRES function.


Journal of Virology | 2001

The 5′ Untranslated Region of Rhopalosiphum padi Virus Contains an Internal Ribosome Entry Site Which Functions Efficiently in Mammalian, Plant, and Insect Translation Systems

Kathryn E. Woolaway; Konstantinos Lazaridis; Graham J. Belsham; Michael J. Carter; Lisa O. Roberts

ABSTRACT Rhopalosiphum padi virus (RhPV) is one of several picorna-like viruses that infect insects; sequence analysis has revealed distinct differences between these agents and mammalian picornaviruses. RhPV has a single-stranded positive-sense RNA genome of about 10 kb; unlike the genomes of Picornaviridae, however, this genome contains two long open reading frames (ORFs). ORF1 encodes the virus nonstructural proteins, while the downstream ORF, ORF2, specifies the structural proteins. Both ORFs are preceded by long untranslated regions (UTRs). The intergenic UTR is known to contain an internal ribosome entry site (IRES) which directs non-AUG-initiated translation of ORF2. We have examined the 5′ UTR of RhPV for IRES activity by translating synthetic dicistronic mRNAs containing this sequence in a variety of systems. We now report that the 5′ UTR contains an element which directs internal initiation of protein synthesis from an AUG codon in mammalian, plant, andDrosophila in vitro translation systems. In contrast, the encephalomyocarditis virus IRES functions only in the mammalian system. The RhPV 5′ IRES element has features in common with picornavirus IRES elements, in that no coding sequence is required for IRES function, but also with cellular IRES elements, as deletion analysis indicates that this IRES element does not have sharply defined boundaries.


The EMBO Journal | 2007

Structural insights into the transcriptional and translational roles of Ebp1

Tom P. Monie; Andrew J Perrin; James R. Birtley; Trevor R. Sweeney; Ioannis Karakasiliotis; Yasmin Chaudhry; Lisa O. Roberts; Stephen Matthews; Ian Goodfellow; Stephen Curry

The ErbB3‐binding protein 1 (Ebp1) is an important regulator of transcription, affecting eukaryotic cell growth, proliferation, differentiation and survival. Ebp1 can also affect translation and cooperates with the polypyrimidine tract‐binding protein (PTB) to stimulate the activity of the internal ribosome entry site (IRES) of foot‐and‐mouth disease virus (FMDV). We report here the crystal structure of murine Ebp1 (p48 isoform), providing the first glimpse of the architecture of this versatile regulator. The structure reveals a core domain that is homologous to methionine aminopeptidases, coupled to a C‐terminal extension that contains important motifs for binding proteins and RNA. It sheds new light on the conformational differences between the p42 and p48 isoforms of Ebp1, the disposition of the key protein‐interacting motif (354LKALL358) and the RNA‐binding activity of Ebp1. We show that the primary RNA‐binding site is formed by a Lys‐rich motif in the C terminus and mediates the interaction with the FMDV IRES. We also demonstrate a specific functional requirement for Ebp1 in FMDV IRES‐directed translation that is independent of a direct interaction with PTB.


Molecular and Cellular Biology | 2005

A Cross-Kingdom Internal Ribosome Entry Site Reveals a Simplified Mode of Internal Ribosome Entry

Ilya M. Terenin; Sergei E. Dmitriev; Dmitri E. Andreev; Elizabeth Royall; Graham J. Belsham; Lisa O. Roberts; Ivan N. Shatsky

ABSTRACT Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5′ untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with ∼23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5′-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins.


Journal of Virology | 2004

A Bunyamwera Virus Minireplicon System in Mosquito Cells

Alain Kohl; Timothy J. Hart; Carol Noonan; Elizabeth Royall; Lisa O. Roberts; Richard M. Elliott

ABSTRACT Artificial minigenomes are powerful tools for studying the replication and transcription of negative-strand RNA viruses. Bunyamwera virus (BUN; genus Orthobunyavirus, family Bunyaviridae) is an arbovirus that shows fundamental biological differences when replicating in mammalian versus mosquito cells. To study BUN RNA synthesis in mosquito cells, we developed a bacteriophage T7 RNA polymerase-based minireplicon system similar to that described previously for mammalian cells. An Aedes albopictus C6/36-derived mosquito cell line stably expressing T7 RNA polymerase was established. Viral proteins and artificial minigenomes (containing Renilla luciferase as a reporter) were transcribed and expressed in these cells from transfected T7 promoter-containing plasmids. Transcription of the minigenome required two viral proteins, the nucleocapsid protein N and the RNA-dependent RNA polymerase L, a situation similar to that in mammalian cells. However, unlike the situation in mammalian cells, the viral polymerase was not inhibited by the viral nonstructural protein NSs. We also report that promoter strength is different for vertebrate versus invertebrate cells. The development of this system opens the way for a detailed comparison of bunyavirus replication in cells of disparate phylogeny.


Journal of General Virology | 2010

Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway

Andreas Gerondopoulos; Terry Jackson; Paul Monaghan; Nicole Doyle; Lisa O. Roberts

For many viruses, endocytosis and exposure to the low pH within acidic endosomes is essential for infection. It has previously been reported that feline calicivirus uses clathrin-mediated endocytosis for entry into mammalian cells. Here, we report that infection of RAW264.7 macrophages by the closely related murine norovirus-1 (MNV-1) does not require the clathrin pathway, as infection was not inhibited by expression of dominant-negative Eps15 or by knockdown of the adaptin-2 complex. Further, infection was not inhibited by reagents that raise endosomal pH. RAW264.7 macrophages were shown not to express caveolin, and flotillin depletion did not inhibit infection, suggesting that caveolae and the flotillin pathway are not required for cell entry. However, MNV-1 infection was inhibited by methyl-beta-cyclodextrin and the dynamin inhibitor, dynasore. Addition of these drugs to the cells after a period of virus internalization did not inhibit infection, suggesting the involvement of cholesterol-sensitive lipid rafts and dynamin in the entry mechanism. Macropinocytosis (MPC) was shown to be active in RAW264.7 macrophages (as indicated by uptake of dextran) and could be blocked by 5-(N-ethyl-N-isopropyl) amiloride (EIPA), which is reported to inhibit this pathway. However, infection was enhanced in the presence of EIPA. Similarly, actin disruption, which also inhibits MPC, resulted in enhanced infection. These results suggest that MPC could contribute to virus degradation or that inhibition of MPC could lead to the upregulation of other endocytic pathways of virus uptake.


Journal of Virology | 2008

The Picornavirus Avian Encephalomyelitis Virus Possesses a Hepatitis C Virus-Like Internal Ribosome Entry Site Element

Mehran Bakhshesh; Elisabetta Groppelli; Margaret M. Willcocks; Elizabeth Royall; Graham J. Belsham; Lisa O. Roberts

ABSTRACT Avian encephalomyelitis virus (AEV) is a picornavirus that causes disease in poultry worldwide, and flocks must be vaccinated for protection. AEV is currently classified within the hepatovirus genus, since its proteins are most closely related to those of hepatitis A virus (HAV). We now provide evidence that the 494-nucleotide-long 5′ untranslated region of the AEV genome contains an internal ribosome entry site (IRES) element that functions efficiently in vitro and in mammalian cells. Unlike the HAV IRES, the AEV IRES is relatively short and functions in the presence of cleaved eIF4G and it is also resistant to an inhibitor of eIF4A. These properties are reminiscent of the recently discovered class of IRES elements within certain other picornaviruses, such as porcine teschovirus 1 (PTV-1). Like the PTV-1 IRES, the AEV IRES shows significant similarity to the hepatitis C virus (HCV) IRES in sequence, function, and predicted secondary structure. Furthermore, mutational analysis of the predicted pseudoknot structure at the 3′ end of the AEV IRES lends support to the secondary structure we present. AEV is therefore another example of a picornavirus harboring an HCV-like IRES element within its genome, and thus, its classification within the hepatovirus genus may need to be reassessed in light of these findings.


PLOS ONE | 2013

IRES-Mediated Translation of Membrane Proteins and Glycoproteins in Eukaryotic Cell-Free Systems

Andreas K. Brödel; Andrei Sonnabend; Lisa O. Roberts; Marlitt Stech; Doreen A. Wüstenhagen; Stefan Kubick

Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.

Collaboration


Dive into the Lisa O. Roberts's collaboration.

Top Co-Authors

Avatar

Graham J. Belsham

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge