Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edwin Westreicher-Kristen is active.

Publication


Featured researches published by Edwin Westreicher-Kristen.


Archives of Animal Nutrition | 2012

Variations in chemical composition and in vitro and in situ ruminal degradation characteristics of dried distillers’ grains with solubles from European ethanol plants

Edwin Westreicher-Kristen; H. Steingass; M. Rodehutscord

The objective of this study was to characterise variations in the composition and nutritive value of dried distillers’ grains with solubles (DDGS) for ruminants, and to estimate the undegradable crude protein (UDP) in DDGS. Thirteen samples originating from wheat, corn, barley and blends of different substrates were studied. The rumen degradation of crude protein (CP) was determined using the nylon bag technique. Samples were incubated for 0, 1, 2, 4, 8, 16, 32 and 72 h, and in situ degradation kinetics were determined. The UDP was estimated using a passage rate of 8%/h. In vitro gas production was measured to estimate the metabolisable energy (ME), net energy for lactation (NEL) and in vitro digestibility of organic matter (IVDOM). Chemical profiles varied among samples [in g/kg dry matter (DM) ± standard deviation]; the values were 310 ± 33 CP, 86 ± 37 ether extract, 89 ± 18 crude fibre, 408 ± 39 neutral detergent fibre, 151 ± 39 acid detergent fibre and 62 ± 31 acid detergent lignin, as well as in protein fractions according to the Cornell Net Carbohydrate and Protein System [in g/kg CP]; the values were for fractions A, 161 ± 82; B1, 24 ± 11; B2, 404 ± 105; B3, 242 ± 61; and C, 170 ± 87. The ME, NEL [MJ/kg DM] and IVDOM [%] also varied among samples: 12.1 ± 0.59, 7.3 ± 0.39 and 72.5 ± 4.30, respectively. The in situ rapidly degradable CP fraction (a) varied from 10.2% to 30.6%, and the potentially degradable fraction (b) averaged to 66.8%. The UDP varied from 8.6% to 62.6% of CP. The present study suggests significant variations in composition and nutritive value among different sources of DDGS. The UDP could be predicted on the basis of analysed CP fractions, but the accuracy of UDP prediction improved upon the inclusion of neutral-detergent insoluble nitrogen, explaining 94% of the variation in the UDP values. We conclude that chemical protein fractions may be used to predict the UDP values of DDGS and that the variability in the protein fractions of DDGS should be considered when formulating diets for dairy cows.


Archives of Animal Nutrition | 2017

Effect of dietary Quebracho tannin extract on feed intake, digestibility, excretion of urinary purine derivatives and milk production in dairy cows

A. Henke; U. Dickhoefer; Edwin Westreicher-Kristen; Karin Knappstein; Joachim Molkentin; Mario Hasler; A. Susenbeth

ABSTRACT The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE15 (basal diet with QTE at 15 g/kg DM) and QTE30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE30, whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE15 and QTE30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE15 and QTE30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE15. While there was no effect of Diet QTE15, treatment QTE30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.


Archives of Animal Nutrition | 2015

Estimation of utilisable crude protein at the duodenum of dried distillers’ grains with solubles using a modified gas test

Edwin Westreicher-Kristen; H. Steingass; M. Rodehutscord

The objective of this study was to characterise the variation of utilisable crude protein at the duodenum (uCP) of dried distillers’ grains with solubles (DDGS) for ruminants using a modified gas test and to predict the uCP in DDGS based on chemical composition. Thirteen samples originating from wheat, maize, barley or blends of different substrates were studied. The in vitro uCP was estimated using the modified Hohenheim gas test (moHGT). Samples were incubated in rumen fluid for 8 h, 24 h and 48 h followed by ammonia distillation. The obtained values were compared to reference values of uCP (based on the contents of crude protein (CP), in situ undegraded CP and metabolisable energy). The reference and in vitro values of uCP were calculated according to passage rates of 2, 5 and 8%/h (i.e., uCP2, uCP5 and uCP8, respectively). The in vitro uCP8 ranged from 214 to 320 g/kg DM and reference values from 158 to 302 g/kg DM. The in vitro uCP2 was on average lower (by 7 g/kg DM) and in vitro uCP8 was higher (by 56 g/kg DM) than their respective reference values. The in vitro uCP5 and uCP8 were correlated with reference values and the correlations were improved with increasing passage rates. When the differences of uCP content between in vitro and reference values were related to CP fractions, they increased with increasing content of CP fraction A and decreasing content of CP fraction B3 for uCP8. The prediction of uCP values from chemical composition was not reliable. It was concluded that uCP can be predicted on the basis of the moHGT method and CP fractions. The accuracy of prediction improved upon the inclusion of CP fractions and neutral-detergent insoluble nitrogen. The present study revealed a significant variation in the uCP content of DDGS, which should be considered when formulating rations for dairy cows.


Journal of Dairy Science | 2018

Replacing maize silage plus soybean meal with red clover silage plus wheat in diets for lactating dairy cows

Franziska Schulz; Edwin Westreicher-Kristen; Karin Knappstein; Joachim Molkentin; A. Susenbeth

The objectives of this study were to evaluate the effects of replacing maize silage plus soybean meal with red clover silage (RCS) plus wheat on feed intake, diet digestibility, N partitioning, urinary excretion of purine derivatives, and milk production in dairy cows. Forty-four lactating German Holstein cows were used in a 4 × 4 Latin square design with 21-d periods composed of a 13-d adaptation phase followed by an 8-d sampling phase. Experimental diets offered as total mixed ration consisted of a constant forage-to-concentrate ratio (75:25) with targeted proportions of RCS-to-maize silage of 15:60 (RCS15), 30:45 (RCS30), 45:30 (RCS45), and 60:15 (RCS60) on a dry matter (DM) basis. Increasing the proportion of RCS plus wheat in the diet decreased linearly the intake of DM from 22.4 to 19.8 kg/d, and of organic matter from 21.1 to 18.1 kg/d. The apparent total tract digestibility (ATTD) of DM and organic matter did not differ across diets and averaged 68.4 and 70.5%, respectively. However, ATTD of N decreased linearly from 68.5 to 63.2%, whereas ATTD of neutral detergent fiber and acid detergent fiber increased linearly from 50.4 to 59.6% and from 48.4 to 57.7%, respectively, when increasing the proportion of RCS plus wheat. Fecal N excretion increased from 31.6 (RCS15) to 37.2% (RCS60) of N intake, whereas urinary N excretion was the lowest (32.8% of N intake) with RCS45. Hence, N efficiency (milk N/N intake) decreased linearly with incremental levels of RCS plus wheat, being the lowest when feeding RCS60 (25.4%), probably due to increased nonprotein N proportion in total dietary N. Urinary excretion of purine derivatives decreased linearly from 378 to 339 mmol/d, which suggests that increasing levels of RCS plus wheat reduced the microbial crude protein flow at the duodenum. Milk yield and milk protein concentration declined linearly from 35.9 to 30.2 kg/d and from 3.20 to 3.01%, respectively, when increasing the proportion of RCS plus wheat. In conclusion, caution should be taken before introducing high levels of RCS plus wheat in diets of high-yielding dairy cows. However, RCS plus wheat can be included up to 30% of the dairy cow diet (DM basis) without a reduction in lactation performance.


Journal of Dairy Science | 2017

Effect of dietary quebracho tannin extract on milk fatty acid composition in cows

A. Henke; Edwin Westreicher-Kristen; Joachim Molkentin; U. Dickhoefer; Karin Knappstein; Mario Hasler; A. Susenbeth

The aim of this study was to examine the capacity of quebracho tannin extract (QTE) to modulate the fatty acid (FA) profile in the milk fat of cows. Fifty Holstein cows yielding 33.2 ± 8.2 kg/d of milk were divided into 2 groups. The cows were fed a basal diet with a forage-concentrate ratio of 66:34 on a dry matter (DM) basis. Diets tested were control (CON, basal diet without QTE) and basal diet plus 15 or 30 g of QTE/kg of DM (QTE15 and QTE30, respectively). Two treatments could be tested simultaneously and were arranged along 6 periods. The milk FA profile was characterized by increments in the proportion of linoleic (LA) and α-linolenic acid (α-LNA) (QTE15 = 10 and 6.1%; QTE30 = 28 and 25%, respectively) compared to CON, which might indicate reduced ruminal biohydrogenation (BH) of both dietary LA and α-LNA. Vaccenic acid (VA) in the milk fat was reduced (QTE15 8.9% and QTE30 12%) compared to CON, which may be linked to inhibited BH of LA and α-LNA. Rumenic acid (RA), a conjugated LA (cis-9,trans-11 conjugated linoleic acid) and an important human health promoter, was unfortunately decreased (QTE15 8.3% and QTE30 16%) in the milk compared with CON, probably because of inhibited ruminal BH of LA. However, reduced RA in the milk was probably due to reduced availability of VA produced in the rumen and the consequently low VA available to be desaturated to RA in the mammary gland by Δ9-desaturase. The proportions of total polyunsaturated FA were increased with QTE15 and QTE30 by 4.7 and 15% compared to CON, respectively, and the long-chain FA proportions were also increased (QTE15 2.0% and QTE30 8.2%). Moreover, myristic and palmitic acid were reduced by QTE30 (9.6 and 3.3%, respectively) compared to CON, which also contributed to increasing the nutritional quality of milk because they are recognized to increase high-density lipoprotein in humans. Branched-chain FA in milk was reduced with QTE treatments, which indicates inhibited ruminal BH and microbial activity. In general, our findings suggest that dietary QTE have the potential to modulate FA profile of milk fat, and this effect is dosage dependent. Because QTE influenced the FA profile of milk fat both positively and negatively, further research is needed before concluding that QTE may improve the nutritional quality of cow milk fat in human diets.


Journal of Dairy Science | 2017

Technical note: An improved tool to insert lines for abomasal infusion in rumen cannulated cattle

Edwin Westreicher-Kristen; A. Susenbeth

An improved tool was tested that facilitates the insertion of abomasal infusion lines in ruminally cannulated cattle for postruminal infusion studies. The insertion device was made from a 68 × 25 mm section of 20-mm i.d. stainless steel device with a weight of 125 g. The general procedure to place the tool is to pass the insertion device with the infusion line through the rumen cannula, through the sulcus omasi (reticulo-omasal orifice), and finally into the abomasum. Once inside the omasum, the insertion device is placed inside the abomasum by gently shifting the infusion line from the flexible polyvinyl chloride tubing fitted to the insertion device. The insertion device places itself by self-moving down through the abomasal orifice into the abomasum by means of its own weight. After device placement, its position can be verified by palpating through the wall of the rumen. This way, an infusion line can easily be inserted into the abomasum by any person without introducing the hand into the omasum, avoiding possible injuries to the animal and tool being expulsed of its desired position.


Journal of Dairy Science | 2018

Effect of replacing maize silage with red clover silage in the diet on milk fatty acid composition in cows

Franziska Schulz; Edwin Westreicher-Kristen; Joachim Molkentin; Karin Knappstein; A. Susenbeth

This study aimed to evaluate the effect of replacing maize silage plus soybean meal with red clover silage (RCS) plus wheat on the fatty acid (FA) profile in the milk fat of cows. Forty-four lactating German Holstein cows were used in a 4 × 4 Latin square design with 21-d periods composed of 13 d of adaptation to diets followed by an 8-d sampling phase. Experimental diets offered as total mixed ration consisted of a constant forage-to-concentrate ratio (75:25) with target proportions of RCS to maize silage of 15:60 (RCS15), 30:45 (RCS30), 45:30 (RCS45), and 60:15 (RCS60) on a dry matter basis. Increasing the level of RCS in the diet was accompanied by a reduction of linoleic acid content in the diet and decreased linearly the proportions of linoleic acid in the milk up to 4%. Proportions of α-linolenic acid in milk increased 2-fold with RCS60 compared with RCS15, which resulted from the linear increase in α-linolenic acid intake with incremental levels of RCS. Vaccenic acid in the milk fat was reduced by 24%. Rumenic acid, a conjugated linoleic acid (cis-9,trans-11 conjugated linoleic acid) considered to be a human health promoter, was also decreased by 22%. Reduced rumenic acid in the milk fat was probably due to a reduced amount of vaccenic acid produced in the rumen and, consequently, to the low amount of vaccenic acid to be desaturated to rumenic acid in the mammary gland by Δ9-desaturase. Oleic acid was enriched in the milk fat, although the dietary concentration of oleic acid decreased. Stearic acid proportions remained constant with increasing levels of RCS. The proportions of total polyunsaturated FA were increased by 12%, and the long-chain FA proportions increased linearly with increasing levels of RCS. Myristic acid was reduced linearly, but palmitic acid remained constant. Saturated FA was reduced linearly by 2%. Branched-chain FA, which are presumed to possess anticarcinogenic properties, were reduced to a small extent only (quadratic effect). We conclude that replacing maize silage with RCS appears to alter milk FA composition by reducing linoleic acid intake and ruminal biohydrogenation. Feeding RCS represents a strategy to increase intake of α-linolenic acid in dairy cows. However, because changes in the FA profile show positive as well as negative effects, no distinct conclusions can be drawn with regard to human health benefits.


Journal of Animal Science | 2018

Postruminal digestion of starch infused into the abomasum of heifers with or without exogenous amylase administration

Edwin Westreicher-Kristen; Kristina Robbers; R. Blank; Arnulf Tröscher; U. Dickhoefer; Siegfried Wolffram; A. Susenbeth

The effect of an exogenous amylase on postruminal digestion of starch infused into the abomasum of cattle was studied. Four rumen-cannulated heifers were fed 5.5 kg DM/d of a diet without starch, and assigned randomly to a crossover design. The experiment consisted of 2 periods lasting 23 d each with 10 d for adaptation to the diet followed by 13 d of abomasal infusion and sample collection. During the first 3 d of each infusion phase, isotonic saline solution was infused (1 liter/h) for measurement of baseline values in feces, followed by daily infusions of 880 g DM corn starch (1 kg/10 liters of water) without or with the addition of 2% of amylase. Titanium dioxide (10 g/d) was ruminally administered for estimation of fecal excretion. Digestion of starch in small intestine was calculated as the difference between the amounts of infused starch, disappeared from hindgut and fecal excretion. The apparent disappearance of starch from the hindgut was estimated based on the increment of microbial nitrogen (N) excretion due to starch infusion (1 g microbial N/100 g fermented starch) compared to baseline values. The concentration of purine bases in feces was used to estimate excretion of microbial N. Microbial N excretion increased with starch infusion (P < 0.05) but was not influenced by amylase (P = 0.81). Starch disappearance from the small intestine was not improved by amylase (P = 0.78) and averaged 85%. Amylase affected neither blood concentration of glucose (P = 0.80) nor of insulin (P = 0.26), but glucagon was lower without (P < 0.0001) than with amylase. The infusion of starch increased fecal excretion of total VFA (acetate, propionate, and butyrate) by 53% (P < 0.05), which indicates increased carbohydrate fermentation in the hindgut and incomplete digestion of starch in the small intestine. However, the excretion of total VFA was not affected by amylase (P = 0.66). Lactate excretion was higher at the second day of starch infusion (P < 0.05) without than with amylase, which suggests lower flow of starch from the small intestine to the hindgut due to a possible effect of amylase addition in animals not adapted to starch digestion. However, lactate excretion returned near to baseline values within 2 d, which was probably due to increase of lactate-utilizing bacteria and the adaptation of the microbial population in the hindgut. Further studies with higher starch levels and addition of amylase are recommended.


Animal | 2013

In situ ruminal degradation of amino acids and in vitro protein digestibility of undegraded CP of dried distillers' grains with solubles from European ethanol plants.

Edwin Westreicher-Kristen; H. Steingass; M. Rodehutscord


Journal of Animal Physiology and Animal Nutrition | 2014

Effect of feeding dried distillers' grains with solubles on milk yield and milk composition of cows in mid-lactation and digestibility in sheep

Edwin Westreicher-Kristen; R. Kaiser; H. Steingass; M. Rodehutscord

Collaboration


Dive into the Edwin Westreicher-Kristen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Steingass

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge