Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eiichi Hinoi is active.

Publication


Featured researches published by Eiichi Hinoi.


Cell | 2007

Endocrine Regulation of Energy Metabolism by the Skeleton

Na Kyung Lee; Hideaki Sowa; Eiichi Hinoi; Mathieu Ferron; Jong Deok Ahn; Cyrille Confavreux; Romain Dacquin; Patrick J. Mee; Marc D. McKee; Dae Young Jung; Zhiyou Zhang; Jason K. Kim; Franck Mauvais-Jarvis; Patricia Ducy; Gerard Karsenty

The regulation of bone remodeling by an adipocyte-derived hormone implies that bone may exert a feedback control of energy homeostasis. To test this hypothesis we looked for genes expressed in osteoblasts, encoding signaling molecules and affecting energy metabolism. We show here that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and are protected from obesity and glucose intolerance because of an increase in beta-cell proliferation, insulin secretion, and insulin sensitivity. In contrast, mice lacking the osteoblast-secreted molecule osteocalcin display decreased beta-cell proliferation, glucose intolerance, and insulin resistance. Removing one Osteocalcin allele from OST-PTP-deficient mice corrects their metabolic phenotype. Ex vivo, osteocalcin can stimulate CyclinD1 and Insulin expression in beta-cells and Adiponectin, an insulin-sensitizing adipokine, in adipocytes; in vivo osteocalcin can improve glucose tolerance. By revealing that the skeleton exerts an endocrine regulation of sugar homeostasis this study expands the biological importance of this organ and our understanding of energy metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice

Mathieu Ferron; Eiichi Hinoi; Gerard Karsenty; Patricia Ducy

The osteoblast-specific secreted molecule osteocalcin behaves as a hormone regulating glucose metabolism and fat mass in two mutant mouse strains. Here, we ask two questions: is the action of osteocalcin on β cells and adipocytes elicited by the same concentrations of the molecule, and more importantly, does osteocalcin regulate energy metabolism in WT mice? Cell-based assays using isolated pancreatic islets, a β cell line, and primary adipocytes showed that picomolar amounts of osteocalcin are sufficient to regulate the expression of the insulin genes and β cell proliferation markers, whereas nanomolar amounts affect adiponectin and Pgc1α expression in white and brown adipocytes, respectively. In vivo the same difference exists in osteocalcins ability to regulate glucose metabolism on the one hand and affect insulin sensitivity and fat mass on the other hand. Furthermore, we show that long-term treatment of WT mice with osteocalcin can significantly weaken the deleterious effect on body mass and glucose metabolism of gold thioglucose-induced hyperphagia and high-fat diet. These results establish in WT mice the importance of this novel molecular player in the regulation of glucose metabolism and fat mass and suggest that osteocalcin may be of value in the treatment of metabolic diseases.


Journal of Cell Biology | 2008

The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity

Eiichi Hinoi; Nan Gao; Dae Young Jung; Vijay K. Yadav; Tatsuya Yoshizawa; Martin G. Myers; Streamson C. Chua; Jason K. Kim; Klaus H. Kaestner; Gerard Karsenty

The osteoblast-secreted molecule osteocalcin favors insulin secretion, but how this function is regulated in vivo by extracellular signals is for now unknown. In this study, we show that leptin, which instead inhibits insulin secretion, partly uses the sympathetic nervous system to fulfill this function. Remarkably, for our purpose, an osteoblast-specific ablation of sympathetic signaling results in a leptin-dependent hyperinsulinemia. In osteoblasts, sympathetic tone stimulates expression of Esp, a gene inhibiting the activity of osteocalcin, which is an insulin secretagogue. Accordingly, Esp inactivation doubles hyperinsulinemia and delays glucose intolerance in ob/ob mice, whereas Osteocalcin inactivation halves their hyperinsulinemia. By showing that leptin inhibits insulin secretion by decreasing osteocalcin bioactivity, this study illustrates the importance of the relationship existing between fat and skeleton for the regulation of glucose homeostasis.


Journal of Clinical Investigation | 2009

The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts

Tatsuya Yoshizawa; Eiichi Hinoi; Dae Young Jung; Daisuke Kajimura; Mathieu Ferron; Jin Seo; Jonathan M. Graff; Jason K. Kim; Gerard Karsenty

The recent demonstration that osteoblasts have a role in controlling energy metabolism suggests that they express cell-specific regulatory genes involved in this process. Activating transcription factor 4 (ATF4) is a transcription factor that accumulates predominantly in osteoblasts, where it regulates virtually all functions linked to the maintenance of bone mass. Since Atf4-/- mice have smaller fat pads than littermate controls, we investigated whether ATF4 also influences energy metabolism. Here, we have shown, through analysis of Atf4-/- mice, that ATF4 inhibits insulin secretion and decreases insulin sensitivity in liver, fat, and muscle. Several lines of evidence indicated that this function of ATF4 occurred through its osteoblastic expression. First, insulin sensitivity is enhanced in the liver of Atf4-/- mice, but not in cultured hepatocytes from these mice. Second, mice overexpressing ATF4 in osteoblasts only [termed here alpha1(I)Collagen-Atf4 mice] displayed a decrease in insulin secretion and were insulin insensitive. Third, the alpha1(I)Collagen-Atf4 transgene corrected the energy metabolism phenotype of Atf4-/- mice. Fourth, and more definitely, mice lacking ATF4 only in osteoblasts presented the same metabolic abnormalities as Atf4-/- mice. Molecularly, ATF4 favored expression in osteoblasts of Esp, which encodes a product that decreases the bioactivity of osteocalcin, an osteoblast-specific secreted molecule that enhances secretion of and sensitivity to insulin. These results provide a transcriptional basis to the observation that osteoblasts fulfill endocrine functions and identify ATF4 as a regulator of most functions of osteoblasts.


Journal of Biological Chemistry | 2006

Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation.

Eiichi Hinoi; Sayumi Fujimori; Liyang Wang; Hironori Hojo; Kyosuke Uno; Yukio Yoneda

Nrf2 (nuclear factor E2 p45-related factor 2) is believed to be a transcription factor essential for the regulation of many detoxifying and antioxidative genes in different tissues. In the present study, we investigated the role of Nrf2 in the regulation of osteoblastic differentiation. nrf2 mRNA expression was significantly up-regulated in femur isolated from ovariectomized mice, whereas in situ hybridization analysis revealed that up-regulation of nrf2 mRNA was mainly found in osteoblasts attached on cancellous bone in femur of ovariectomized mice. Expression of Nrf2 protein was also seen in osteoblasts in neonatal mouse tibia and calvaria. In osteoblastic MC3T3-E1 cells stably transfected with nrf2 expression vector, significant inhibition was seen in the maturation-dependent increase in alkaline phosphatase activity as well as the mineralized matrix formation. Stable overexpression of nrf2 significantly impaired Runx2 (runt-related transcription factor 2)-dependent stimulation of osteocalcin promoter activity and recruitment of Runx2 on osteocalcin promoter without affecting the expression of runx2 mRNA. Coimmunoprecipitation and mammalian two-hybrid assay revealed a physical interaction between Runx2 and Nrf2, whereas cellular distribution of endogenous Runx2 was not apparently changed by nrf2 overexpression in MC3T3-E1 cells. Alternatively, Nrf2 bound to antioxidant-responsive element-like-2 sequence of osteocalcin promoter. The inhibition by nrf2 on runx2-dependent osteocalcin promoter activity was partially prevented by the introduction of reporter of deletion mutant for ARE-like-2 sequence of osteocalcin promoter. These data suggest that Nrf2 may negatively regulate cellular differentiation through inhibition of the Runx2-dependent transcriptional activity in osteoblasts.


The FASEB Journal | 2003

Modulation of cellular differentiation by N-methyl-D-aspartate receptors in osteoblasts

Eiichi Hinoi; Sayumi Fujimori; Yukio Yoneda

N‐Methyl‐d‐aspartate (NMDA) receptors for the central neurotransmitter l‐glutamate (Glu) have been shown to be present in both osteoblasts and osteoclasts. Sustained exposure to the NMDA channel antagonist dizocilpine (MK‐801) significantly prevented increases in both alkaline phosphatase activity and Ca2+ accumulation in a concentration‐dependent manner in osteoblasts cultured for 7–28 days in vitro (DIV), without significantly affecting cell survivability. Osteocalcin expression was markedly reduced in the presence of MK‐801 in osteoblasts cultured for 28 DIV. Both an NMDA domain antagonist and a glycine domain antagonist similarly prevented Ca2+ accumulation in osteoblasts exposed for 28 consecutive DIV. MK‐801 was effective in significantly inhibiting Ca2+ accumulation determined at 28 DIV in osteoblasts exposed before 7 DIV but was ineffective in cells exposed after 11–21 DIV. Sustained exposure to MK‐801 significantly inhibited DNA binding activity and expression of core binding factor α‐1 (CBFA1) in osteoblasts exposed after 7 DIV up to 28 DIV, but not in those exposed before 7 DIV. These results suggest that heteromeric NMDA receptor channels may be functionally expressed to regulate mechanisms underlying cellular differentiation rather than proliferation and/or maturation through modulation of expression of CBFA1 in cultured rat calvarial osteoblasts.


Journal of Bone and Mineral Research | 2013

An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice.

Takeshi Takarada; Eiichi Hinoi; Ryota Nakazato; Hiroki Ochi; Cheng Xu; Azusa Tsuchikane; Shu Takeda; Gerard Karsenty; Takaya Abe; Hiroshi Kiyonari; Yukio Yoneda

Global gene deletion studies in mice and humans have established the pivotal role of runt related transcription factor‐2 (Runx2) in both intramembranous and endochondral ossification processes during skeletogenesis. In this study, we for the first time generated mice carrying a conditional Runx2 allele with exon 4, which encodes the Runt domain, flanked by loxP sites. These mice were crossed with α1(I)‐collagen‐Cre or α1(II)‐collagen‐Cre transgenic mice to obtain osteoblast‐specific or chondrocyte‐specific Runx2 deficient mice, respectively. As seen in Runx2−/− mice, perinatal lethality was observed in α1(II)‐Cre;Runx2flox/flox mice, but this was not the case in animals in which α1(I)‐collagen‐Cre was used to delete Runx2. When using double‐staining with Alizarin red for mineralized matrix and Alcian blue for cartilaginous matrix, we observed previously that mineralization was totally absent at embryonic day 15.5 (E15.5) throughout the body in Runx2−/− mice, but was found in areas undergoing intramembranous ossification such as skull and clavicles in α1(II)‐Cre;Runx2flox/flox mice. In newborn α1(II)‐Cre;Runx2flox/flox mice, mineralization impairment was restricted to skeletal areas undergoing endochondral ossification including long bones and vertebrae. In contrast, no apparent skeletal abnormalities were seen in mutant embryo, newborn, and 3‐week‐old to 6‐week old‐mice in which Runx2 had been deleted with the α1(I)‐collagen‐Cre driver. These results suggest that Runx2 is absolutely required for endochondral ossification during embryonic and postnatal skeletogenesis, but that disrupting its expression in already committed osteoblasts as achieved here with the α1(I)‐collagen‐Cre driver does not affect overtly intramembranous and endochondral ossification. The Runx2 floxed allele established here is undoubtedly useful for investigating the role of Runx2 in particular cells.


Annals of the New York Academy of Sciences | 2009

An Osteoblast-dependent Mechanism Contributes to the Leptin Regulation of Insulin Secretion

Eiichi Hinoi; Nan Gao; Dae Young Jung; Vijay K. Yadav; Tatsuya Yoshizawa; Daisuke Kajimura; Martin G. Myers; Streamson C. Chua; Qin Wang; Jason K. Kim; Klaus H. Kaestner; Gerard Karsenty

Our work focuses on genetic and molecular mechanisms for the reciprocal regulation of bone and energy metabolism orchestrated by leptin and osteocalcin. In the context of this reciprocal regulation, the finding that leptin inhibits insulin secretion by β cells while osteocalcin favors it is surprising. In exploring the molecular bases of this paradox we found that leptin, as is the case for most of its functions, uses a neuronal relay to inhibit insulin secretion. Cell‐specific gene‐deletion experiments revealed that a component of this neuronal regulation is the sympathetic innervation to osteoblasts. Under the control of leptin the sympathetic tone favors expression in osteoblasts of Esp, which inhibits the metabolic activity of osteocalcin. We further identify ATF4 as a transcription factor that regulates Esp expression and thereby insulin secretion and sensitivity. Taken together these data illustrate the tight connections between bone remodeling and energy metabolism and add further credence to the notion that the osteoblast is a bona fide endocrine cell type.


Biochemical and Biophysical Research Communications | 2002

Facilitation of glutamate release by ionotropic glutamate receptors in osteoblasts

Eiichi Hinoi; Sayumi Fujimori; Takeshi Takarada; Hideo Taniura; Yukio Yoneda

Constitutive expression of mRNA was seen for the vesicular glutamate transporter brain-specific Na(+)-dependent inorganic phosphate cotransporter (BNPI), but not differentiation-associated Na(+)-dependent inorganic phosphate cotransporter, in rat calvarial osteoblasts cultured for 7 and 21 days in vitro (DIV). Three different agonists for ionotropic glutamate receptors (iGluR) at 1mM, as well as 50mM KCl, significantly increased the release of endogenous L-glutamate from osteoblasts cultured for 7DIV when determined 5 min after the addition by using a high performance liquid chromatograph. The inhibitor of desensitization of DL-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA) receptors cyclothiazide significantly potentiated and prolonged the release of endogenous L-glutamate evoked by AMPA in a dose-dependent manner. The release evoked by AMPA was significantly prevented by the addition of an AMPA receptor antagonist as well as by the removal of Ca(2+) ions. These results suggest that endogenous L-glutamate could be released from intracellular vesicular constituents associated with BNPI through activation of particular iGluR subtypes expressed in cultured rat calvarial osteoblasts.


Progress in Neurobiology | 2001

Consolidation of transient ionotropic glutamate signals through nuclear transcription factors in the brain.

Yukio Yoneda; Nobuyuki Kuramoto; Tomoya Kitayama; Eiichi Hinoi

Long-lasting alterations of neuronal functions could involve mechanisms associated with consolidation of transient extracellular signals through modulation of de novo synthesis of particular functional proteins in the brain. In eukaryotes, protein de novo synthesis is mainly under the control at the level of gene transcription by transcription factors in the cell nucleus. Transcription factors are nuclear proteins with an ability to recognize particular core nucleotides at the upstream and/or downstream of target genes, and thereby to modulate the activity of RNA polymerase II that is responsible for the formation of mRNA from double stranded DNA. Gel retardation electrophoresis is widely employed for conventional detection of DNA binding activities of a variety of transcription factors with different protein motifs. Extracellular ionotropic glutamate (Glu) signals lead to rapid and selective potentiation of DNA binding of the nuclear transcription factor activator protein-1 (AP1) that is a homo- and heterodimeric complex between Jun and Fos family members, in addition to inducing expression of the corresponding proteins, in a manner unique to each Glu signal in murine hippocampus. Therefore, extracellular Glu signals may be differentially transduced into the nucleus to express AP1 with different assemblies between Jun and Fos family members, and thereby to modulate de novo synthesis of the individual target proteins at the level of gene transcription in the hippocampus. Such mechanisms may be operative on synaptic plasticity as well as delayed neuronal death through consolidation of alterations of a variety of cellular functions induced by transient extracellular signals in the brain.

Collaboration


Dive into the Eiichi Hinoi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge