Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Takarada is active.

Publication


Featured researches published by Takeshi Takarada.


Journal of Bone and Mineral Research | 2013

An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice.

Takeshi Takarada; Eiichi Hinoi; Ryota Nakazato; Hiroki Ochi; Cheng Xu; Azusa Tsuchikane; Shu Takeda; Gerard Karsenty; Takaya Abe; Hiroshi Kiyonari; Yukio Yoneda

Global gene deletion studies in mice and humans have established the pivotal role of runt related transcription factor‐2 (Runx2) in both intramembranous and endochondral ossification processes during skeletogenesis. In this study, we for the first time generated mice carrying a conditional Runx2 allele with exon 4, which encodes the Runt domain, flanked by loxP sites. These mice were crossed with α1(I)‐collagen‐Cre or α1(II)‐collagen‐Cre transgenic mice to obtain osteoblast‐specific or chondrocyte‐specific Runx2 deficient mice, respectively. As seen in Runx2−/− mice, perinatal lethality was observed in α1(II)‐Cre;Runx2flox/flox mice, but this was not the case in animals in which α1(I)‐collagen‐Cre was used to delete Runx2. When using double‐staining with Alizarin red for mineralized matrix and Alcian blue for cartilaginous matrix, we observed previously that mineralization was totally absent at embryonic day 15.5 (E15.5) throughout the body in Runx2−/− mice, but was found in areas undergoing intramembranous ossification such as skull and clavicles in α1(II)‐Cre;Runx2flox/flox mice. In newborn α1(II)‐Cre;Runx2flox/flox mice, mineralization impairment was restricted to skeletal areas undergoing endochondral ossification including long bones and vertebrae. In contrast, no apparent skeletal abnormalities were seen in mutant embryo, newborn, and 3‐week‐old to 6‐week old‐mice in which Runx2 had been deleted with the α1(I)‐collagen‐Cre driver. These results suggest that Runx2 is absolutely required for endochondral ossification during embryonic and postnatal skeletogenesis, but that disrupting its expression in already committed osteoblasts as achieved here with the α1(I)‐collagen‐Cre driver does not affect overtly intramembranous and endochondral ossification. The Runx2 floxed allele established here is undoubtedly useful for investigating the role of Runx2 in particular cells.


Biochemical and Biophysical Research Communications | 2002

Facilitation of glutamate release by ionotropic glutamate receptors in osteoblasts

Eiichi Hinoi; Sayumi Fujimori; Takeshi Takarada; Hideo Taniura; Yukio Yoneda

Constitutive expression of mRNA was seen for the vesicular glutamate transporter brain-specific Na(+)-dependent inorganic phosphate cotransporter (BNPI), but not differentiation-associated Na(+)-dependent inorganic phosphate cotransporter, in rat calvarial osteoblasts cultured for 7 and 21 days in vitro (DIV). Three different agonists for ionotropic glutamate receptors (iGluR) at 1mM, as well as 50mM KCl, significantly increased the release of endogenous L-glutamate from osteoblasts cultured for 7DIV when determined 5 min after the addition by using a high performance liquid chromatograph. The inhibitor of desensitization of DL-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA) receptors cyclothiazide significantly potentiated and prolonged the release of endogenous L-glutamate evoked by AMPA in a dose-dependent manner. The release evoked by AMPA was significantly prevented by the addition of an AMPA receptor antagonist as well as by the removal of Ca(2+) ions. These results suggest that endogenous L-glutamate could be released from intracellular vesicular constituents associated with BNPI through activation of particular iGluR subtypes expressed in cultured rat calvarial osteoblasts.


Journal of Biological Chemistry | 2012

Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice

Takeshi Takarada; Ayumi Kodama; Shogo Hotta; Michihiro Mieda; Shigeki Shimba; Eiichi Hinoi; Yukio Yoneda

Background: Clock genes are expressed in different peripheral organs. Results: Rhythmic expression was lost with Ihh in the growth plate from mice defective of BMAL1 with a small body size. Conclusion: Endochondral ossification is under the control by clock genes in chondrocytes. Significance: Peripheral clocks are a target for treating cartilaginous diseases relevant to abnormal postnatal chondrogenesis. We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression.


Journal of Biological Chemistry | 2006

Up-regulation of per mRNA Expression by Parathyroid Hormone through a Protein Kinase A-CREB-dependent Mechanism in Chondrocytes

Eiichi Hinoi; Taichi Ueshima; Hironori Hojo; Mika Iemata; Takeshi Takarada; Yukio Yoneda

In bone, clock genes are involved in the circadian oscillation of bone formation and extracellular matrix expression. However, to date little attention has been paid to circadian rhythm in association with expression of clock genes during chondrogenesis in cartilage. In this study, we investigated the functional expression of different clock genes by chondrocytes in the course of cartilage development. The mRNA expression of types I, II, and X collagens exhibited a 24-h rhythm with a peak at zeitgeber time 6, in addition to a 24-h rhythmicity of all the clock genes examined in mouse femurs in vivo. Marked expression of different clock genes was seen in both osteoblastic MC3T3-E1 and chondrogenic ATDC5 cells in vitro, whereas parathyroid hormone (PTH) transiently increased period 1 (per1) mRNA expression at 1 h in both cell lines. Similar increases were seen in the mRNA levels for both per1 and per2 in prehypertrophic chondrocytes in metatarsal organotypic cultures within 2 h of exposure to PTH. PTH significantly activated the mouse per1 (mper1) and mper2 promoters but not the mper3 promoter in a manner sensitive to both a protein kinase A inhibitor and deletion of the cAMP-responsive element sequence (CRE) in ATDC5 cells. In HEK293 cells, introduction of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (bmal1)/clock enhanced mouse type II collagen first intron reporter activity without affecting promoter activity, with reduction effected by either per1 or per2. These results suggest that PTH directly stimulates mper expression through a protein kinase A-CRE-binding protein signaling pathway for subsequent regulation of bmal1/clock-dependent extracellular matrix expression in cartilage.


Journal of Cellular Physiology | 2009

Functional Expression of β2 Adrenergic Receptors Responsible for Protection Against Oxidative Stress Through Promotion of Glutathione Synthesis After Nrf2 Upregulation in Undifferentiated Mesenchymal C3H10T1/2 Stem Cells

Yoshifumi Takahata; Takeshi Takarada; Mika Iemata; Tomomi Yamamoto; Yukary Nakamura; Ayumi Kodama; Yukio Yoneda

Adrenaline is believed to play a dual role as a neurotransmitter in the central nervous system and an adrenomedullary hormone in the peripheral tissues. In contrast to accumulating evidence for the involvement in endochondral ossification, osteoblastogenesis, and osteoclastogenesis, little attention has been paid to the role of adrenergic signals in the mechanisms underlying proliferation and differentiation of mesenchymal stem cells with self‐renewal capacity and multi‐potentiality to differentiate into osteoblast, chondrocyte, adipocyte, and myocyte lineages. Expression of mRNA was seen for different adrenergic receptor (AdR) subtypes, including β2AdR, in the mesenchymal stem cell line C3H10T1/2 cells and mouse bone marrow mesenchymal stem cells before differentiation. Exposure to adrenaline not only increased cAMP formation, phosphorylation of cAMP responsive element (CRE) binding protein (CREB) on serine133 and CRE reporter activity in a manner sensitive to propranolol, but also rendered C3H10T1/2 cells resistant to the cytotoxicity of hydrogen peroxide, but not of either 2,4‐dinitirophenol or tunicamycin. Adrenaline induced a rapid but transient increase in mRNA expression of the antioxidative gene nuclear factor E2 p45‐related factor‐2 (Nrf2) along with an increase in the cystine/glutamate antiporter subunit xCT mRNA expression. Hydrogen peroxide was less cytotoxic in cells overexpressing Nrf2, moreover, while adrenaline significantly increased xCT promoter activity with an increase in endogenous glutathione levels. These results suggest that adrenaline may selectively protect mesenchymal C3H10T1/2 cells from oxidative stress through a mechanism related to the promoted biosynthesis of glutathione in association with transient Nrf2 expression after activation of β2AdR. J. Cell. Physiol. 218: 268–275, 2009.


Molecular Pharmacology | 2006

A molecular mechanism of pyruvate protection against cytotoxicity of reactive oxygen species in osteoblasts.

Eiichi Hinoi; Takeshi Takarada; Yuriko Tsuchihashi; Sayumi Fujimori; Nobuaki Moriguchi; Liyang Wang; Kyosuke Uno; Yukio Yoneda

We demonstrated previously that exogenous pyruvate has a protective action against cell death by hydrogen peroxide in cultured osteoblasts through a mechanism associated with its antioxidative property. In the present study, we have evaluated possible participation of monocarboxylate transporters (MCTs) responsible for the bidirectional membrane transport of pyruvate in the cytoprotective property in osteoblasts. Expression of the MCT2 isoform was found in cultured rat calvarial osteoblasts and in osteoblasts located on mouse tibia at both mRNA and protein levels. The accumulation of [14C]pyruvate occurred in a temperature- and pH-dependent manner in osteoblasts cultured for 7 days with high sensitivity to a specific MCT inhibitor, whereas pyruvate was released into extracellular spaces from cultured osteoblasts in a fashion sensitive to the MCT inhibitor. Transient overexpression of the MCT2 isoform led to reduced vulnerability to the cytotoxicity of hydrogen peroxide with an increased activity of [14C]pyruvate accumulation in murine osteoblastic MC3T3-E1 cells. Ovariectomy significantly decreased the content of pyruvate in femoral bone marrows in mice in vivo, whereas daily i.p. administration of pyruvate at 0.25 g/kg significantly prevented alterations of several histomorphometric parameters as well as cancellous bone loss in femurs by ovariectomy on 28 days after the operation. These results suggest that MCTs may be functionally expressed by osteoblasts to play a pivotal role in mechanisms related to the cytoprotective property of pyruvate.


Journal of Neuroscience Research | 2009

Possible Protection by Notoginsenoside R1 against Glutamate Neurotoxicity Mediated by N-methyl-D-aspartate Receptors Composed of an NR1/NR2B Subunit Assembly

Bin Gu; Noritaka Nakamichi; Wensheng Zhang; Yukary Nakamura; Yuki Kambe; Ryo Fukumori; Kazuhiro Takuma; Kiyofumi Yamada; Takeshi Takarada; Hideo Taniura; Yukio Yoneda

Notoginsenoside R1 (NTR1) is the main active ingredient in Panax notoginseng, a herbal medicine widely used in Asia for years. The purpose of this study was to investigate pharmacological properties of NTR1 on neurotoxicity of glutamate (Glu) in primary cultured mouse cortical neurons along with its possible mechanism of action. Wefound that NTR1 significantly protected neurons from the loss of cellular viability caused by brief exposure to 10 μM Glu for 1 hr in a dose‐dependent manner at concentrations from 0.1 to 10 μM, without affecting the viability alone. NTR1 significantly inhibited the increased number of cells positive to propidium iodide (PI) staining, increase of intracellular free Ca2+ ions, overproduction of intracellular reactive oxygen species, and depolarization of mitochondrial membrane potential in cultured neurons exposed to Glu, in addition to blocking decreased Bcl‐2 and increased Bax expression levels. We further evaluated the target site at which NTR1 protects neurons from Glu toxicity by using the acquired expression strategy of N‐methyl‐D‐aspartate (NMDA) receptor subunits in human embryonic kidney 293 cells. We found that 10 μM NTR1 protected NR1/NR2B subunit expressing cells from cell death by 100 μM NMDA, but not cells expressing NR1/NR2A subunits, when determined by PI staining. These results suggest that NTR1 may preferentially protect neurons from Glu excitotoxicity mediated by NMDA receptor composed of an NR1/NR2B subunit assembly in the brain.


Current Drug Targets - Cns & Neurological Disorders | 2005

Glutamate transporters as drug targets.

Eiichi Hinoi; Takeshi Takarada; Yuriko Tsuchihashi; Yukio Yoneda

The L-glutamate (Glu) has been hypothesized as an excitatory amino acid neurotransmitter in the mammalian central nervous system after successful cloning and identification of a number of genes encoding signaling machineries required for the neurocrine at synapses in the brain. These include excitatory amino acid transporters (EAATs) for signal termination and vesicular Glu transporters (VGLUTs) for signal output through exocytotic release, in addition to Glu receptors (GluRs) for signal input. These Glu signaling molecules not only play key roles in mechanisms associated with synaptic plasticity such as learning and memory, but also participate in the etiology and pathology of different neuropsychiatric disorders and neuronal cell death seen in various neurodegenerative diseases. Of the aforementioned Glu signaling molecules, EAATs are essential for the termination of signal transmission mediated by Glu as well as for the prevention of neurotoxicity mediated by this endogenous excitotoxin, while VGLUTs are crucial for the storage of Glu in synaptic vesicles to suffice for the definition of a glutamatergic phenotype. Many early desperate efforts were devoted to the search and development of novel compounds with a therapeutic window toward GluRs, while relatively little attention was paid to either EAATs or VGLUTs in this aspect. In this review, therefore, we will summarize the classification and functionality of EAATs and VGLUTs with a focus on their possibilities as potential therapeutic targets for different neurodegenerative and neuropsychiatric disorders related to malfunction of Glu signaling in human beings.


British Journal of Pharmacology | 2005

Abolition of chondral mineralization by group III metabotropic glutamate receptors expressed in rodent cartilage.

Liyang Wang; Eiichi Hinoi; Akihiro Takemori; Takeshi Takarada; Yukio Yoneda

Previous studies have demonstrated the functional expression by osteoblasts of glutamate (Glu) signaling machineries responsible for the stimulation of cell proliferation and differentiation in bone, while there is no information available on the expression of the Glu signaling system by cartilage to date. In cultured mouse embryonic metatarsals isolated before vascularization, chondral mineralization was almost completely inhibited in the presence of the group III metabotropic Glu receptor (mGluR) agonist L‐(1)‐2‐amino‐4‐phosphonobutyrate (L‐AP4) in a manner sensitive to an antagonist, with the total length being unchanged. A group II mGluR agonist was similarly more effective in inhibiting the mineralization than a group I mGluR agonist, while none of ionotropic GluR agonists drastically affected the mineralization. Both histological and in situ hybridization analyses revealed that L‐AP4 specifically inhibited chondral mineralization, without apoptotic cell death, in cultured metatarsals. In addition to the constitutive expression of mRNA for particular mGluRs in both cultured mouse metatarsals and rat costal chondrocytes, L‐AP4 significantly inhibited the accumulation of cyclic AMP by forskolin and parathyroid hormone in a manner sensitive to a group III mGluR antagonist in cultured chondrocytes. Moreover, L‐AP4 drastically inhibited the expression of osteopontin mRNA in both cultured metatarsals and chondrocytes. These results suggest that Glu may at least in part play a role as a signal mediator in mechanisms associated with chondral mineralization through the group III mGluR subtype functionally expressed by chondrocytes in rodent cartilage.


Journal of Bone and Mineral Research | 2012

Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia

Eiichi Hinoi; Hiroki Ochi; Takeshi Takarada; Eri Nakatani; Takashi Iezaki; Hiroko Nakajima; Hiroyuki Fujita; Yoshifumi Takahata; Shinya Hidano; Takashi Kobayashi; Shu Takeda; Yukio Yoneda

Osteocytes are thought to play a role as a mechanical sensor through their communication network in bone. Although osteocytes are the most abundant cells in bone, little attention has been paid to their physiological and pathological functions in skeletogenesis. Here, we have attempted to delineate the pivotal functional role of osteocytes in regulation of bone remodeling under pathological conditions. We first found markedly increased osteoclastic differentiation by conditioned media (CM) from osteocytic MLO‐Y4 cells previously exposed to hypoxia in vitro. Using microarray and real‐time PCR analyses, we identified growth differentiation factor 15 (GDF15) as a key candidate factor secreted from osteocytes under hypoxia. Recombinant GDF15 significantly promoted osteoclastic differentiation in a concentration‐dependent manner, with concomitant facilitation of phosphorylation of both p65 and inhibitory‐κB in the presence of receptor activator of nuclear factor‐κB ligand. To examine the possible functional significance of GDF15 in vivo, mice were subjected to ligation of the right femoral artery as a hypoxic model. A significant increase in GDF15 expression was specifically observed in tibias of the ligated limb but not in tibias of the normally perfused limb. Under these experimental conditions, in cancellous bone of proximal tibias in the ligated limb, a significant reduction was observed in bone volume, whereas a significant increase was seen in the extent of osteoclast surface/bone surface when determined by bone histomorphometric analysis. Finally, the anti‐GDF15 antibody prevented bone loss through inhibiting osteoclastic activation in tibias from mice with femoral artery ligation in vivo, in addition to suppressing osteoclastic activity enhanced by CM from osteocytes exposed to hypoxia in vitro. These findings suggest that GDF15 could play a pivotal role in the pathogenesis of bone loss relevant to hypoxia through promotion of osteoclastogenesis after secretion from adjacent osteocytes during disuse and/or ischemia in bone.

Collaboration


Dive into the Takeshi Takarada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge