Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine M. Prins is active.

Publication


Featured researches published by Elaine M. Prins.


Journal of Geophysical Research | 1998

Potential global fire monitoring from EOS‐MODIS

Yoram J. Kaufman; Christopher O. Justice; Luke P. Flynn; Jackie D. Kendall; Elaine M. Prins; Louis Giglio; Darold E. Ward; W. Paul Menzel; Alberto W. Setzer

The National Aeronautic and Space Administration (NASA) plans to launch the moderate resolution imaging spectroradiometer (MODIS) on the polarorbiting Earth Observation System (EOS) providing morning and evening global observations in 1999 and afternoon and night observations in 2000. These four MODIS daily fire observations will advance global fire monitoring with special 1 km resolution fire channels at 4 and 11 μm, with high saturation of about 450 and 400 K, respectively. MODIS data will also be used to monitor burn scars, vegetation type and condition, smoke aerosols, water vapor, and clouds for overall monitoring of the fire process and its effects on ecosystems, the atmosphere, and the climate. The MODIS fire science team is preparing algorithms that use the thermal signature to separate the fire signal from the background signal. A database of active fire products will be generated and archived at a 1 km resolution and summarized on a grid of 10 km and 0.5°, daily, 8 days, and monthly. It includes the fire occurrence and location, the rate of emission of thermal energy from the fire, and a rough estimate of the smoldering/flaming ratio. This information will be used in monitoring the spatial and temporal distribution of fires in different ecosystems, detecting changes in fire distribution and identifying new fire frontiers, wildfires, and changes in the frequency of the fires or their relative strength. We plan to combine the MODIS fire measurements with a detailed diurnal cycle of the fires from geostationary satellites. Sensitivity studies and analyses of aircraft and satellite data from the Yellowstone wildfire of 1988 and prescribed fires in the Smoke, Clouds, and Radiation (SCAR) aircraft field experiments are used to evaluate and validate the fire algorithms and to establish the relationship between the fire thermal properties, the rate of biomass consumption, and the emissions of aerosol and trace gases from fires.


Bulletin of the American Meteorological Society | 2005

IMPROVING NATIONAL AIR QUALITY FORECASTS WITH SATELLITE AEROSOL OBSERVATIONS

Jassim A. Al-Saadi; James J. Szykman; R. Bradley Pierce; Chieko Kittaka; Doreen O. Neil; D. Allen Chu; Lorraine A. Remer; Liam E. Gumley; Elaine M. Prins; Lewis Weinstock; Clinton MacDonald; Richard Wayland; Fred Dimmick; Jack Fishman

Accurate air quality forecasts can allow for mitigation of the health risks associated with high levels of air pollution. During September 2003, a team of NASA, NOAA, and EPA researchers demonstrated a prototype tool for improving fine particulate matter (PM2.5) air quality forecasts using satellite aerosol observations. Daily forecast products were generated from a near-real-time fusion of multiple input data products, including aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS)/Earth Observing System (EOS) instrument on the NASA Terra satellite, PM2.5 concentration from over 300 state/local/national surface monitoring stations, meteorological fields from the NOAA/NCEP Eta Model, and fire locations from the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) product. The products were disseminated via a Web interface to a small g...


Journal of Geophysical Research | 1998

An overview of GOES‐8 diurnal fire and smoke results for SCAR‐B and 1995 fire season in South America

Elaine M. Prins; J. M. Feltz; W. Paul Menzel; Darold E. Ward

The launch of the eighth Geostationary Operational Environmental Satellite (GOES-8) in 1994 introduced an improved capability for diurnal fire and smoke monitoring throughout the western hemisphere. In South America the GOES-8 automated biomass burning algorithm (ABBA) and the automated smoke/aerosol detection algorithm (ASADA) are being used to monitor biomass burning. This paper outlines GOES-8 ABBA and ASADA development activities and summarizes results for the Smoke, Clouds, and Radiation in Brazil (SCAR-B) experiment and the 1995 fire season. GOES-8 ABBA results document the diurnal, spatial, and seasonal variability in fire activity throughout South America. A validation exercise compares GOES-8 ABBA results with ground truth measurements for two SCAR-B prescribed burns. GOES-8 ASADA aerosol coverage and derived albedo results provide an overview of the extent of daily and seasonal smoke coverage and relative intensities. Day-to-day variability in smoke extent closely tracks fluctuations in fire activity.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2009

Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program

Jeffrey S. Reid; Edward J. Hyer; Elaine M. Prins; Douglas L. Westphal; Jianglong Zhang; Jun Wang; Sundar A. Christopher; Cynthia A. Curtis; Christopher C. Schmidt; Daniel P. Eleuterio; Kim Richardson; Jay P. Hoffman

Recently, global biomass-burning research has grown from what was primarily a climate field to include a vibrant air quality observation and forecasting community. While new fire monitoring systems are based on fundamental Earth Systems Science (ESS) research, adaptation to the forecasting problem requires special procedures and simplifications. In a reciprocal manner, results from the air quality research community have contributed scientifically to basic ESS. To help exploit research and data products in climate, ESS, meteorology and air quality biomass burning communities, the joint Navy, NASA, NOAA, and University Fire Locating and Modeling of Burning Emissions (FLAMBE) program was formed in 1999. Based upon the operational NOAA/NESDIS Wild-Fire Automated Biomass Burning Algorithm (WF_ABBA) and the near real time University of Maryland/NASA MODIS fire products coupled to the operational Navy Aerosol Analysis and Prediction System (NAAPS) transport model, FLAMBE is a combined ESS and operational system to study the nature of smoke particle emissions and transport at the synoptic to continental scales. In this paper, we give an overview of the FLAMBE system and present fundamental metrics on emission and transport patterns of smoke. We also provide examples on regional smoke transport mechanisms and demonstrate that MODIS optical depth data assimilation provides significant variance reduction against observations. Using FLAMBE as a context, throughout the paper we discuss observability issues surrounding the biomass burning system and the subsequent propagation of error. Current indications are that regional particle emissions estimates still have integer factors of uncertainty.


Journal of Geophysical Research | 2011

Daily and 3‐hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide

Mingquan Mu; James T. Randerson; G. R. van der Werf; Louis Giglio; Prasad S. Kasibhatla; Douglas C. Morton; G.J. Collatz; Ruth S. DeFries; E. J. Hyer; Elaine M. Prins; David W. T. Griffith; Debra Wunch; G. C. Toon; Vanessa Sherlock; Paul O. Wennberg

Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003–2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.


Journal of Geophysical Research | 1994

Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991

Elaine M. Prins; W. Paul Menzel

In an effort to get a better understanding of the extent and patterns of burning in South America, geostationary satellite data have been used to monitor active fires. Previous work demonstrated the ability to manually detect subpixel fire activity in selected areas of the selva and cerrado regions in South America with shortwave and longwave infrared data available from the Geostationary Operational Environmental Satellite (GOES) visible infrared spin scan radiometer atmospheric sounder (VAS) This paper presents the GOES VAS automated biomass-burning algorithm (ABBA) which was developed to determine basin-wide trends in fire activity in South America utilizing the GOES VAS archive. Comparisons between the manual and the automated techniques revealed that overall, the ABBA proved to be more consistent in identifying fires and better suited for trend analysis. The automated algorithm was applied daily to a study area extending from 5°S to 15°S and from 45°W to 70°W for 2 weeks at the peak of the burning seasons in South America in 1983, 1988, 1989, and 1991 in an effort to measure the areal extent of burning in South America during the past decade and to provide additional insight into the diurnal signature in satellite detection of biomass-burning activities. The expansion of the regions of burning are readily detected in a comparison of these 4 years. From 1983 to 1991 the amount of burning detected by the GOES VAS ABBA during these 2-week periods nearly doubled in the selva and mixed regions and tripled in the cerrado. Diurnal analyses confirmed earlier results indicating that the optimum time to monitor biomass burning is around 1530 UTC.


Journal of remote sensing | 2008

Validation analyses of an operational fire monitoring product: The Hazard Mapping System

Wilfrid Schroeder; M. Ruminski; Ivan Csiszar; Louis Giglio; Elaine M. Prins; Christopher C. Schmidt; Jeffrey T. Morisette

Vegetation fires are becoming increasingly important especially in regions where the proximity to urban areas can result in large populations being directly impacted by such events. During emergency situations, accurate fire location data becomes crucial to assess the affected areas as well as to track smoke plumes and delineate evacuation plans. In this study, the performance of the NOAA/NESDIS Hazard Mapping System (HMS) is evaluated. The system combines automated and analyst‐made fire detections to monitor fires across the conterminous United States. Using 30‐m‐spatial‐resolution ASTER imagery as the main instantaneous validation data, commission and omission error estimates are reported for a subset of HMS automated and analyst‐based fire pixels derived from the Terra MODIS and GOES data.


Weather and Forecasting | 2004

Fire Detection Using GOES Rapid Scan Imagery

John F. Weaver; Daniel T. Lindsey; Dan Bikos; Christopher C. Schmidt; Elaine M. Prins

Abstract This paper demonstrates the proper use of geostationary satellite imagery in wildland fire detection. The roles of both the visible and the 3.9-μm channels are emphasized. Case studies from June 2002 are presented to illustrate techniques that can be utilized in both the detection and short-range forecasting processes. The examples demonstrate that, when utilized correctly, the sensitivity of the shortwave infrared channel to subpixel heat sources can often result in detections that match the timelines of human observations. Finally, a derived satellite product that increases the detection rate of wildland fires from space is described.


Bulletin of the American Meteorological Society | 1998

An Assessment of GOES-8 Imager Data Quality

Gary P. Ellrod; Rao V. Achutuni; Jaime Daniels; Elaine M. Prins; James P. Nelson

Abstract The Geostationary Operational Environmental Satellite-8 (GOES-8), the first in the GOES I–M series of advanced meteorological satellites was launched in April 1994 and became operational at 75°W longitude the following year.GOES-8 features numerous improvements over prior GOES platforms such as 1) improved resolution in the infrared (IR) and water vapor bands, 2) reduced instrument noise, 3) 10-bit visible and IR digitization, 4) greater image frequency, 5) more spectral bands, and 6) an independent sounder. A qualitative and quantitative comparison of the imager data from GOES-8 and GOES-7 shows that imagery from the newer spacecraft is superior in most respects. Improvements in resolution and instrument noise on GOES-8 provide sharper, cleaner images that allow easier detection of significant meteorological or oceanographic features. Infrared temperature comparisons between GOES-8 and GOES-7 were within 0.5°–2.0°C for all IR bands, indicating consistency between the two spacecraft. Visible band...


Archive | 2013

The GOFC-GOLD Fire Mapping and Monitoring Theme: Assessment and Strategic Plans

Ivan Csiszar; Christopher O. Justice; Johann G. Goldammer; T. J. Lynham; William J. de Groot; Elaine M. Prins; Christopher D. Elvidge; Dieter Oertel; Eckehard Lorenz; Thomas J. Bobbe; Brad Quayle; Diane K. Davies; David P. Roy; Luigi Boschetti; S. Korontzi; Stephen D. Ambrose; George Stephens

The objectives of the fire mapping and monitoring theme of the global observation of forest and landcover dynamics (GOFC-GOLD) program are to refine and articulate the international requirements for fire related observations, to increase access to and make the best possible use of existing and future observing systems for fire management, policy decision-making and global change research and to ensure the provision of long-term, systematic satellite observations necessary for the production of the full suite of recommended fire products. The GOFC-GOLD Fire Implementation Team also fostered the development of regional networks of data providers and users to capture regional specific information needs and priorities. This chapter discusses specific goals of the program related to pre-fire evaluation, fire observations and post-fire assessment, and the implementation status of corresponding activities. Examples of contributory programs from US agencies are also presented.

Collaboration


Dive into the Elaine M. Prins's collaboration.

Top Co-Authors

Avatar

Christopher C. Schmidt

Cooperative Institute for Meteorological Satellite Studies

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Reid

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sundar A. Christopher

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar

Douglas L. Westphal

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ivan Csiszar

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Saulo R. Freitas

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karla M. Longo

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Elvidge

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Reid

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge