Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine Papa is active.

Publication


Featured researches published by Elaine Papa.


Cardiovascular Research | 2016

Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice

Jason M. Aliotta; Mandy Pereira; Sicheng Wen; Mark S. Dooner; Michael Del Tatto; Elaine Papa; Laura R. Goldberg; Grayson L. Baird; Corey E. Ventetuolo; Peter J. Quesenberry; James R. Klinger

AIMS Extracellular vesicles (EVs) from mice with monocrotaline (MCT)-induced pulmonary hypertension (PH) induce PH in healthy mice, and the exosomes (EXO) fraction of EVs from mesenchymal stem cells (MSCs) can blunt the development of hypoxic PH. We sought to determine whether the EXO fraction of EVs is responsible for modulating pulmonary vascular responses and whether differences in EXO-miR content explains the differential effects of EXOs from MSCs and mice with MCT-PH. METHODS AND RESULTS Plasma, lung EVs from MCT-PH, and control mice were divided into EXO (exosome), microvesicle (MV) fractions and injected into healthy mice. EVs from MSCs were divided into EXO, MV fractions and injected into MCT-treated mice. PH was assessed by right ventricle-to-left ventricle + septum (RV/LV + S) ratio and pulmonary arterial wall thickness-to-diameter (WT/D) ratio. miR microarray analyses were also performed on all EXO populations. EXOs but not MVs from MCT-injured mice increased RV/LV + S, WT/D ratios in healthy mice. MSC-EXOs prevented any increase in RV/LV + S, WT/D ratios when given at the time of MCT injection and reversed the increase in these ratios when given after MCT administration. EXOs from MCT-injured mice and patients with idiopathic pulmonary arterial hypertension (IPAH) contained increased levels of miRs-19b,-20a,-20b, and -145, whereas miRs isolated from MSC-EXOs had increased levels of anti-inflammatory, anti-proliferative miRs including miRs-34a,-122,-124, and -127. CONCLUSION These findings suggest that circulating or MSC-EXOs may modulate pulmonary hypertensive effects based on their miR cargo. The ability of MSC-EXOs to reverse MCT-PH offers a promising potential target for new PAH therapies.


Leukemia | 2016

Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells.

Sicheng Wen; Mark S. Dooner; Yan Cheng; Elaine Papa; M Del Tatto; Mandy Pereira; Y Deng; Laura R. Goldberg; Jason M. Aliotta; Devasis Chatterjee; C Stewart; A Carpanetto; F Collino; S Bruno; Giovanni Camussi; Peter J. Quesenberry

Mesenchymal stromal cells (MSCs) have been shown to reverse radiation damage to marrow stem cells. We have evaluated the capacity of MSC-derived extracellular vesicles (MSC-EVs) to mitigate radiation injury to marrow stem cells at 4 h to 7 days after irradiation. Significant restoration of marrow stem cell engraftment at 4, 24 and 168 h post irradiation by exposure to MSC-EVs was observed at 3 weeks to 9 months after transplant and further confirmed by secondary engraftment. Intravenous injection of MSC-EVs to 500cGy exposed mice led to partial recovery of peripheral blood counts and restoration of the engraftment of marrow. The murine hematopoietic cell line, FDC-P1 exposed to 500cGy, showed reversal of growth inhibition, DNA damage and apoptosis on exposure to murine or human MSC-EVs. Both murine and human MSC-EVs reverse radiation damage to murine marrow cells and stimulate normal murine marrow stem cell/progenitors to proliferate. A preparation with both exosomes and microvesicles was found to be superior to either microvesicles or exosomes alone. Biologic activity was seen in freshly isolated vesicles and in vesicles stored for up to 6 months in 10% dimethyl sulfoxide at −80 °C. These studies indicate that MSC-EVs can reverse radiation damage to bone marrow stem cells.


Surgery | 2008

Hepatic macrophages promote the neutrophil-dependent resolution of fibrosis in repairing cholestatic rat livers

Mark W. Harty; Elaine Papa; Hannah M. Huddleston; Ezekiel Young; Samantha Nazareth; Charles A. Riley; Grant A. Ramm; Stephen H. Gregory; Thomas F. Tracy

BACKGROUND Cholestatic liver injury from extrahepatic biliary obstruction is well characterized by inflammatory and fibrogenic mechanisms. Little is known, however, about mechanisms required to reverse injury and effect liver repair. We sought to determine the cellular and molecular requirements for repair after biliary decompression, focusing on the role of hepatic macrophages in regulating inflammation and matrix resolution. METHODS Male Sprague-Dawley rats underwent bile duct obstruction for 7 days followed by ductular decompression. Rats were treated with gadolinium chloride (GdCl(3)) to deplete the macrophage populations 24 or 48 hours before decompression. Liver tissue obtained at the time of decompression or after 2 days of repair was processed for morphometric analysis, immunohistochemistry, quantitative RT-PCR and in situ hybridization. RESULTS GdCl(3) treatment for either 24 or 48 hours before decompression reduced the numbers of ED2(+) Kupffer cells and ED1(+) inflammatory macrophages in obstructed livers; only 48 hours of pretreatment, however, reduced the neutrophil counts. Furthermore, 48-hour GdCl(3) pretreatment blocked matrix degradation. Quantitative polymerase chain reaction demonstrated decreased cytokine-induced neutrophil chemoattractant-1 (CINC-1; CXCL1) and intercellular adhesion molecule-1 mRNA expression after GdCl(3) treatment and the elimination of hepatic macrophages. Immunohistochemistry and in situ hybridization revealed that neutrophils and CINC-1 mRNA localize within regions of fibrotic activity during both injury and repair. CONCLUSION We conclude that the macrophage population is not directly involved in fibrotic liver repair. Rather, hepatic macrophages regulate the influx of neutrophils, which may play a direct role in matrix degradation.


American Journal of Pathology | 2010

Neutrophil Depletion Blocks Early Collagen Degradation in Repairing Cholestatic Rat Livers

Mark W. Harty; Christopher S. Muratore; Elaine Papa; Michael S. Gart; Grant A. Ramm; Stephen H. Gregory; Thomas F. Tracy

Biliary obstruction results in a well-characterized cholestatic inflammatory and fibrogenic process; however, the mechanisms and potential for liver repair remain unclear. We previously demonstrated that Kupffer cell depletion reduces polymorphonuclear cell (neutrophil) (PMN) and matrix metalloproteinase (MMP)8 levels in repairing liver. We therefore hypothesized that PMN-dependent MMP activity is essential for successful repair. Male Sprague-Dawley rats received reversible biliary obstruction for 7 days, and the rat PMN-specific antibody RP3 was administered 2 days before biliary decompression (repair) and continued daily until necropsy, when liver underwent morphometric analysis, immunohistochemistry, quantitative RT-PCR, and in situ zymography. We found that RP3 treatment did not reduce Kupffer cell or monocyte number but significantly reduced PMN number at the time of decompression and 2 days after repair. RP3 treatment also blocked resorption of type I collagen. In addition, biliary obstruction resulted in increased expression of MMP3, MMP8, and tissue inhibitor of metalloproteinase 1. Two days after biliary decompression, both MMP3 and tissue inhibitor of metalloproteinase 1 expression declined toward sham levels, whereas MMP8 expression remained elevated and was identified in bile duct epithelial cells by immunohistochemistry. PMN depletion did not alter the hepatic expression of these genes. Conversely, collagen-based in situ zymography demonstrated markedly diminished collagenase activity following PMN depletion. We conclude that PMNs are essential for collagenase activity and collagen resorption during liver repair, and speculate that PMN-derived MMP8 or PMN-mediated activation of intrinsic hepatic MMPs are responsible for successful liver repair.


Experimental Hematology | 2011

Marrow cell genetic phenotype change induced by human lung cancer cells.

Michael Del Tatto; Thomas Ng; Jason M. Aliotta; Gerald A. Colvin; Mark S. Dooner; David Berz; Gerri Dooner; Elaine Papa; Douglas C. Hixson; Bharat Ramratnam; Bassam I. Aswad; Edmund H. Sears; John L. Reagan; Peter J. Quesenberry

Microvesicles have been shown to mediate varieties of intercellular communication. Work in murine species has shown that lung-derived microvesicles can deliver mRNA, transcription factors, and microRNA to marrow cells and alter their phenotype. The present studies evaluated the capacity of excised human lung cancer cells to change the genetic phenotype of human marrow cells. We present the first studies on microvesicle production by excised cancers from human lung and the capacity of these microvesicles to alter the genetic phenotype of normal human marrow cells. We studied 12 cancers involving the lung and assessed nine lung-specific mRNA species (aquaporin, surfactant families, and clara cell-specific protein) in marrow cells exposed to tissue in co-culture, cultured in conditioned media, or exposed to isolated lung cancer-derived microvesicles. We assessed two or seven days of co-culture and marrow which was unseparated, separated by ficoll density gradient centrifugation or ammonium chloride lysis. Under these varying conditions, each cancer derived from lung mediated marrow expression of between one and seven lung-specific genes. Microvesicles were identified in the pellet of ultracentrifuged conditioned media and shown to enter marrow cells and induce lung-specific mRNA expression in marrow. A lung melanoma and a sarcoma also induced lung-specific mRNA in marrow cells. These data indicate that lung cancer cells may alter the genetic phenotype of normal cells and suggest that such perturbations might play a role in tumor progression, tumor recurrence, or metastases. They also suggest that the tissue environment may alter cancer cell gene expression.


Leukemia | 2014

The murine long-term multi-lineage renewal marrow stem cell is a cycling cell

Laura R. Goldberg; Mark S. Dooner; Kevin W. Johnson; Elaine Papa; Mandy Pereira; M Del Tatto; D M Adler; Jason M. Aliotta; Peter J. Quesenberry

Prevailing wisdom holds that hematopoietic stem cells (HSCs) are predominantly quiescent. Although HSC cycle status has long been the subject of scrutiny, virtually all marrow stem cell research has been based on studies of highly purified HSCs. Here we explored the cell cycle status of marrow stem cells in un-separated whole bone marrow (WBM). We show that a large number of long-term multi-lineage engraftable stem cells within WBM are in S/G2/M phase. Using bromodeoxyuridine, we show rapid transit through the cell cycle of a previously defined relatively dormant purified stem cell, the long-term HSC (LT-HSC; Lineage−/c-kit+/Sca-1+/Flk-2−). Actively cycling marrow stem cells have continually changing phenotype with cell cycle transit, likely rendering them difficult to purify to homogeneity. Indeed, as WBM contains actively cycling stem cells, and highly purified stem cells engraft predominantly while quiescent, it follows that the population of cycling marrow stem cells within WBM are lost during purification. Our studies indicate that both the discarded lineage-positive and lineage-negative marrow cells in a stem cell separation contain cycling stem cells. We propose that future work should encompass this larger population of cycling stem cells that is poorly represented in current studies solely focused on purified stem cell populations.


PLOS ONE | 2012

Homing and Long-Term Engraftment of Long- and Short- Term Renewal Hematopoietic Stem Cells

Liansheng Liu; Elaine Papa; Mark S. Dooner; Jason T. Machan; Kevin W. Johnson; Laura R. Goldberg; Peter J. Quesenberry; Gerald A. Colvin

Long-term hematopoietic stem cells (LT-HSC) and short-term hematopoietic stem cells (ST-HSC) have been characterized as having markedly different in vivo repopulation, but similar in vitro growth in liquid culture. These differences could be due to differences in marrow homing. We evaluated this by comparing results when purified ST-HSC and LT-HSC were administered to irradiated mice by three different routes: intravenous, intraperitoneal, and directly into the femur. Purified stem cells derived from B6.SJL mice were competed with marrow cells from C57BL/6J mice into lethally irradiated C57BL/6J mice. Serial transplants into secondary recipients were also carried out. We found no advantage for ST-HSC engraftment when the cells were administered intraperitoneally or directly into femur. However, to our surprise, we found that the purified ST-HSC were not short-term in nature but rather gave long-term multilineage engraftment out to 387 days, albeit at a lower level than the LT-HSC. The ST-HSC also gave secondary engraftment. These observations challenge current models of the stem cell hierarchy and suggest that stem cells are in a continuum of change.


Journal of Surgical Research | 2009

Dexamethasone Alters the Hepatic Inflammatory Cellular Profile Without Changes in Matrix Degradation During Liver Repair Following Biliary Decompression

Christopher S. Muratore; Mark W. Harty; Elaine Papa; Thomas F. Tracy

BACKGROUND Biliary atresia is characterized by extrahepatic bile duct obliteration along with persistent intrahepatic portal inflammation. Steroids are standard in the treatment of cholangitis following the Kasai portoenterostomy, and were advocated for continued suppression of the ongoing immunologic attack against intrahepatic ducts. Recent reports, however, have failed to demonstrate an improved patient outcome or difference in the need for liver transplant in postoperative patients treated with a variety of steroid regimes compared with historic controls. In the wake of progressive liver disease despite biliary decompression, steroids are hypothesized to suppress inflammation and promote bile flow without any supporting data regarding their effect on the emerging cellular and molecular mechanisms of liver repair. We have previously shown in a reversible model of cholestatic injury that repair is mediated by macrophages, neutrophils, and specific matrix metalloproteinase activity (MMP8); we questioned whether steroids would alter these intrinsic mechanisms. METHODS Rats underwent biliary ductal suspension for 7 d, followed by decompression. Rats were treated with IV dexamethasone or saline at the time of decompression. Liver tissue obtained at the time of decompression or after 2 d of repair was processed for morphometric analysis, immunohistochemistry, and quantitative RT-PCR. RESULTS There was a dramatic effect of dexamethasone on the inflammatory component with the initiation of repair. Immunohistochemistry revealed a reduction of both ED1+ hepatic macrophages and ED2+Kupffer cells in repair compared with saline controls. Dexamethasone treatment also reduced infiltrating neutrophils by day 2. TNF-alpha expression, increased during injury in both saline and dexamethasone groups, was markedly reduced by dexamethasone during repair (day 2) whereas IL-6, IL-10, and CINC-1 remained unchanged compared with saline controls. Dexamethasone reduced both MMP8 and TIMP1 expression by day 2, whereas MMP9, 13, and 14 were unchanged compared with sham controls. Despite substantial cellular and molecular changes during repair, collagen resorption was the same in both groups CONCLUSION Dexamethasone has clear effects on both the hepatic macrophage populations and infiltrating neutrophils following biliary decompression. Altered MMP and TIMP gene expression might suggest that steroids have the potential to modify matrix metabolism during repair. Nevertheless, successful resorption of collagen fibrosis proceeded presumably through other MMP activating mechanisms. We conclude that steroids do not impede the rapid intrinsic repair mechanisms of matrix degradation required for successful repair.


Stem Cells Translational Medicine | 2017

Bone Marrow Endothelial Progenitor Cells Are the Cellular Mediators of Pulmonary Hypertension in the Murine Monocrotaline Injury Model

Jason M. Aliotta; Mandy Pereira; Sicheng Wen; Mark S. Dooner; Michael Del Tatto; Elaine Papa; Yan Cheng; Laura R. Goldberg; Corey E. Ventetuolo; Olin Liang; James R. Klinger; Peter J. Quesenberry

The role of bone marrow (BM) cells in modulating pulmonary hypertensive responses is not well understood. Determine if BM‐derived endothelial progenitor cells (EPCs) induce pulmonary hypertension (PH) and if this is attenuated by mesenchymal stem cell (MSC)‐derived extracellular vesicles (EVs). Three BM populations were studied: (a) BM from vehicle and monocrotaline (MCT)‐treated mice (PH induction), (b) BM from vehicle‐, MCT‐treated mice that received MSC‐EV infusion after vehicle, MCT treatment (PH reversal, in vivo), (c) BM from vehicle‐, MCT‐treated mice cultured with MSC‐EVs (PH reversal, in vitro). BM was separated into EPCs (sca‐1+/c‐kit+/VEGFR2+) and non‐EPCs (sca‐1‐/c‐kit‐/VEGFR2‐) and transplanted into healthy mice. Right ventricular (RV) hypertrophy was assessed by RV‐to‐left ventricle+septum (RV/LV+S) ratio and pulmonary vascular remodeling by blood vessel wall thickness‐to‐diameter (WT/D) ratio. EPCs but not non‐EPCs from mice with MCT‐induced PH (MCT‐PH) increased RV/LV+S, WT/D ratios in healthy mice (PH induction). EPCs from MCT‐PH mice treated with MSC‐EVs did not increase RV/LV+S, WT/D ratios in healthy mice (PH reversal, in vivo). Similarly, EPCs from MCT‐PH mice treated with MSC‐EVs pre‐transplantation did not increase RV/LV+S, WT/D ratios in healthy mice (PH reversal, in vitro). MSC‐EV infusion reversed increases in BM‐EPCs and increased lung tissue expression of EPC genes and their receptors/ligands in MCT‐PH mice. These findings suggest that the pulmonary hypertensive effects of BM are mediated by EPCs and those MSC‐EVs attenuate these effects. These findings provide new insights into the pathogenesis of PH and offer a potential target for development of novel PH therapies. Stem Cells Translational Medicine 2017;6:1595–1606


Journal of Antimicrobial Chemotherapy | 1990

Induction of β-lactamase and methicillin resistance in unusual strains of methicillin-resistant Staphylococcus aureus

John M. Boyce; Antone A. Medeiros; Elaine Papa; Clotilde J. O'Gara

Collaboration


Dive into the Elaine Papa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Cheng

Rhode Island Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge