Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Quesenberry is active.

Publication


Featured researches published by Peter J. Quesenberry.


Journal of extracellular vesicles | 2014

Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

Jan Lötvall; Andrew F. Hill; Fred H. Hochberg; Edit I. Buzás; Dolores Di Vizio; Chris Gardiner; Yong Song Gho; Igor V. Kurochkin; Suresh Mathivanan; Peter J. Quesenberry; Susmita Sahoo; Hidetoshi Tahara; Marca H. M. Wauben; Kenneth W. Witwer; Clotilde Théry

Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.


Journal of extracellular vesicles | 2015

Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper.

Thomas Lener; Mario Gimona; Ludwig Aigner; Verena Börger; Edit I. Buzás; Giovanni Camussi; Nathalie Chaput; Devasis Chatterjee; Felipe A. Court; Hernando A. del Portillo; Lorraine O'Driscoll; Stefano Fais; Juan M. Falcon-Perez; Ursula Felderhoff-Mueser; Lorenzo Fraile; Yong Song Gho; André Görgens; Ramesh C. Gupta; An Hendrix; Dirk M. Hermann; Andrew F. Hill; Fred H. Hochberg; Peter A. Horn; Dominique P.V. de Kleijn; Lambros Kordelas; Boris W. Kramer; Eva Maria Krämer-Albers; Sandra Laner-Plamberger; Saara Laitinen; Tommaso Leonardi

Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.


Experimental Hematology | 2010

Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription

Jason M. Aliotta; Mandy Pereira; Kevin W. Johnson; Nicole de Paz; Mark S. Dooner; Napoleon Puente; Carol A. Ayala; Kate E. Brilliant; David Berz; David Lee; Bharat Ramratnam; Paul N. McMillan; Douglas C. Hixson; Djuro Josic; Peter J. Quesenberry

OBJECTIVE Microvesicles have been shown to mediate intercellular communication. Previously, we have correlated entry of murine lung-derived microvesicles into murine bone marrow cells with expression of pulmonary epithelial cell-specific messenger RNA (mRNA) in these marrow cells. The present studies establish that entry of lung-derived microvesicles into marrow cells is a prerequisite for marrow expression of pulmonary epithelial cell-derived mRNA. MATERIALS AND METHODS Murine bone marrow cells cocultured with rat lung, but separated from them using a cell-impermeable membrane (0.4-microm pore size), were analyzed using species-specific primers (for rat or mouse). RESULTS These studies revealed that surfactant B and C mRNA produced by murine marrow cells were of both rat and mouse origin. Similar results were obtained using murine lung cocultured with rat bone marrow cells or when bone marrow cells were analyzed for the presence of species-specific albumin mRNA after coculture with rat or murine liver. These studies show that microvesicles both deliver mRNA to marrow cells and mediate marrow cell transcription of tissue-specific mRNA. The latter likely underlies the longer-term stable change in genetic phenotype that has been observed. We have also observed microRNA in lung-derived microvesicles, and studies with RNase-treated microvesicles indicate that microRNA negatively modulates pulmonary epithelial cell-specific mRNA levels in cocultured marrow cells. In addition, we have also observed tissue-specific expression of brain, heart, and liver mRNA in cocultured marrow cells, suggesting that microvesicle-mediated cellular phenotype change is a universal phenomena. CONCLUSION These studies suggest that cellular systems are more phenotypically labile than previously considered.


Stem Cells | 2007

Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation.

Jason M. Aliotta; Fermin M. Sanchez-Guijo; Gerri Dooner; Kevin W. Johnson; Mark S. Dooner; Kenneth Greer; Deborah Greer; Jeffrey Pimentel; Luiz M. Kolankiewicz; Napoleon Puente; Sam Faradyan; Paulette Ferland; Elaine L. Bearer; Michael Passero; Mehrdad Adedi; Gerald A. Colvin; Peter J. Quesenberry

Numerous animal studies have demonstrated that adult marrow‐derived cells can contribute to the cellular component of the lung. Lung injury is a major variable in this process; however, the mechanism remains unknown. We hypothesize that injured lung is capable of inducing epigenetic modifications of marrow cells, influencing them to assume phenotypic characteristics of lung cells. We report that under certain conditions, radiation‐injured lung induced expression of pulmonary epithelial cell‐specific genes and prosurfactant B protein in cocultured whole bone marrow cells separated by a cell‐impermeable membrane. Lung‐conditioned media had a similar effect on cocultured whole bone marrow cells and was found to contain pulmonary epithelial cell‐specific RNA‐filled microvesicles that entered whole bone marrow cells in culture. Also, whole bone marrow cells cocultured with lung had a greater propensity to produce type II pneumocytes after transplantation into irradiated mice. These findings demonstrate alterations of marrow cell phenotype by lung‐derived microvesicles and suggest a novel mechanism for marrow cell‐directed repair of injured tissue.


Stem Cell Reviews and Reports | 2008

The Paradoxical Dynamism of Marrow Stem Cells: Considerations of Stem Cells, Niches, and Microvesicles

Peter J. Quesenberry; Jason M. Aliotta

Marrow stem cell regulation represents a complex and flexible system. It has been assumed that the system was intrinsically hierarchical in nature, but recent data has indicated that at the progenitor/stem cell level the system may represent a continuum with reversible alterations in phenotype occurring as the stem cells transit cell cycle. Short and long-term engraftment, in vivo and in vitro differentiation, gene expression, and progenitor numbers have all been found to vary reversibly with cell cycle. In essence, the stem cells appear to show variable potential, probably based on transcription factor access, as they proceed through cell cycle. Another critical component of the stem cell regulation is the microenvironment, so-called niches. We propose that there are not just several unique niche cells, but a wide variety of niche cells which continually change phenotype to appropriately interact with the continuum of stem cell phenotypes. A third component of the regulatory system is microvesicle transfer of genetic information between cells. We have shown that marrow cells can express the genetic phenotype of pulmonary epithelial cells after microvesicle transfer from lung to marrow cells. Similar transfers of tissue specific mRNA occur between liver, brain, and heart to marrow cells. Thus, there would appear to be a continuous genetic modulation of cells through microvesicle transfer between cells. We propose that there is an interactive triangulated Venn diagram with continuously changing stem cells interacting with continuously changing areas of influence, both being modulated by transfer of genetic information by microvesicles.


FEBS Letters | 2009

MicroRNA 125a and its regulation of the p53 tumor suppressor gene

Yingjie Zhang; Jin-Song Gao; Xiaoli Tang; Lynne Tucker; Peter J. Quesenberry; Isidore Rigoutsos; Bharat Ramratnam

MicroRNA (miRNA) are a class of non‐coding RNA that suppress gene expression by degradation or translational inhibition of target RNA. Several miRNA have been shown to target oncogenes and recently miRNA‐125b was shown to translationally and transcriptionally inhibit the p53 gene. Here, we show that an additional isomer of miRNA‐125 (miRNA‐125a) translationally arrests mRNA of the p53 tumor suppressor gene. The basis of this activity is the high degree of sequence homology between the seed sequence of miR‐125a and the 3′‐UTR of p53. Our findings add miRNA‐125a to the growing list of miRNA with oncogenic targets.


Experimental Hematology | 2010

Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles

Peter J. Quesenberry; Mark S. Dooner; Jason M. Aliotta

The phenotype of marrow hematopoietic stem cells is determined by cell-cycle state and microvesicle entry into the stem cells. The stem cell population is continually changing based on cell-cycle transit and can only be defined on a population basis. Purification of marrow stem cells only addresses the heterogeneity of these populations. When whole marrow is studied, the long-term repopulating stem cells are in active cell cycle. However, with some variability, when highly purified stem cells are studied, the cells appear to be dormant. Thus, the study of purified stem cells is intrinsically misleading. Tissue-derived microvesicles enhanced by injury effect the phenotype of different cell classes. We propose that previously described stem cell plasticity is due to microvesicle modulation. We further propose a stem cell population model in which the individual cell phenotypes continually change, but the population phenotype is relatively stable. This, in turn, is modulated by microvesicle and microenvironmental influences.


Advanced Drug Delivery Reviews | 2010

Cellular phenotype switching and microvesicles

Peter J. Quesenberry; Jason M. Aliotta

Cell phenotype alteration by cell-derived vesicles presents a new aspect for consideration of cell fate. Accumulating data indicates that vesicles from many cells interact with or enter different target cells from other tissues, altering their phenotype toward that of the cell releasing the vesicles. Cells may be changed by direct interactions, transfer of cell surface receptors or epigenetic reprogramming via transcriptional regulators. Induced epigenetic changes appear to be stable and result in significant functional effects. These data force a reconsideration of the cellular context in which transcription regulates the proliferative and differentiative fate of tissues and suggests a highly plastic cellular system, which might underlay a relatively stable tissue system. The capacity of marrow to convert to non-hematopoietic cells related to vesicle cross-communication may underlie the phenomena of stem cell plasticity. Additionally, vesicles have promise in the clinical arenas of disease biomarkers, tissue restoration and control of neoplastic cell growth.


Breast Cancer Research | 2007

Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis

Todd M. Savarese; William C. Strohsnitter; Hoi Pang Low; Qin Liu; Inkyung Baik; William C. Okulicz; David Chelmow; Pagona Lagiou; Peter J. Quesenberry; Kenneth L. Noller; Chung-Cheng Hsieh

IntroductionPrenatal levels of mitogens may influence the lifetime breast cancer risk by driving stem cell proliferation and increasing the number of target cells, and thereby increasing the chance of mutation events that initiate oncogenesis. We examined in umbilical cord blood the correlation of potential breast epithelial mitogens, including hormones and growth factors, with hematopoietic stem cell concentrations serving as surrogates of overall stem cell potential.MethodsWe analyzed cord blood samples from 289 deliveries. Levels of hormones and growth factors were correlated with concentrations of stem cell and progenitor populations (CD34+ cells, CD34+CD38- cells, CD34+c-kit+ cells, and granulocyte–macrophage colony-forming units). Changes in stem cell concentration associated with each standard deviation change in mitogens and the associated 95% confidence intervals were calculated from multiple regression analysis.ResultsCord blood plasma levels of insulin-like growth factor-1 (IGF-1) were strongly correlated with all the hematopoietic stem and progenitor concentrations examined (one standard-deviation increase in IGF-1 being associated with a 15–19% increase in stem/progenitor concentrations, all P < 0.02). Estriol and insulin-like growth factor binding protein-3 levels were positively and significantly correlated with some of these cell populations. Sex hormone-binding globulin levels were negatively correlated with these stem/progenitor pools. These relationships were stronger in Caucasians and Hispanics and were weaker or not present in Asian-Americans and African-Americans.ConclusionOur data support the concept that in utero mitogens may drive the expansion of stem cell populations. The correlations with IGF-1 and estrogen are noteworthy, as both are crucial for mammary gland development.


Experimental Hematology | 2008

Newer monoclonal antibodies for hematological malignancies

Jorge J. Castillo; Peter J. Quesenberry

Since the approval of rituximab in 1997, monoclonal antibodies have come to play an important role in the therapy of hematological malignancies. Rituximab, gemtuzumab ozogamicin, and alemtuzumab are US Food and Drug Administration-approved for treatment of B-cell lymphomas, acute myeloid leukemia, and chronic lymphocytic leukemia, respectively. Multiple monoclonal antibodies directed against new and not-so-new cellular antigens are undergoing development and investigation all over the world. Most of these new compounds have undergone primatization or humanization, improving their specificity and decreasing their antigenicity when compared to earlier murine or chimeric products. This review will focus on three major aspects of monoclonal antibody therapy: 1) new therapeutic approaches with currently approved agents; 2) preclinical and clinical experience accumulated on new agents in the last few years; discussion will include available phase I, II, and III data on ofatumumab, epratuzumab, CMC-544, HeFi-1, SGN-30, MDX-060, HuM195 (lintuzumab), galiximab, lumiliximab, zanolimumab, and apolizumab; and 3) the role of naked and radiolabeled monoclonal antibodies in the hematopoietic stem cell transplantation setting.

Collaboration


Dive into the Peter J. Quesenberry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge