Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura R. Goldberg is active.

Publication


Featured researches published by Laura R. Goldberg.


Cardiovascular Research | 2016

Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice

Jason M. Aliotta; Mandy Pereira; Sicheng Wen; Mark S. Dooner; Michael Del Tatto; Elaine Papa; Laura R. Goldberg; Grayson L. Baird; Corey E. Ventetuolo; Peter J. Quesenberry; James R. Klinger

AIMS Extracellular vesicles (EVs) from mice with monocrotaline (MCT)-induced pulmonary hypertension (PH) induce PH in healthy mice, and the exosomes (EXO) fraction of EVs from mesenchymal stem cells (MSCs) can blunt the development of hypoxic PH. We sought to determine whether the EXO fraction of EVs is responsible for modulating pulmonary vascular responses and whether differences in EXO-miR content explains the differential effects of EXOs from MSCs and mice with MCT-PH. METHODS AND RESULTS Plasma, lung EVs from MCT-PH, and control mice were divided into EXO (exosome), microvesicle (MV) fractions and injected into healthy mice. EVs from MSCs were divided into EXO, MV fractions and injected into MCT-treated mice. PH was assessed by right ventricle-to-left ventricle + septum (RV/LV + S) ratio and pulmonary arterial wall thickness-to-diameter (WT/D) ratio. miR microarray analyses were also performed on all EXO populations. EXOs but not MVs from MCT-injured mice increased RV/LV + S, WT/D ratios in healthy mice. MSC-EXOs prevented any increase in RV/LV + S, WT/D ratios when given at the time of MCT injection and reversed the increase in these ratios when given after MCT administration. EXOs from MCT-injured mice and patients with idiopathic pulmonary arterial hypertension (IPAH) contained increased levels of miRs-19b,-20a,-20b, and -145, whereas miRs isolated from MSC-EXOs had increased levels of anti-inflammatory, anti-proliferative miRs including miRs-34a,-122,-124, and -127. CONCLUSION These findings suggest that circulating or MSC-EXOs may modulate pulmonary hypertensive effects based on their miR cargo. The ability of MSC-EXOs to reverse MCT-PH offers a promising potential target for new PAH therapies.


Stem Cells and Development | 2014

Cellular Phenotype and Extracellular Vesicles: Basic and Clinical Considerations

Peter J. Quesenberry; Laura R. Goldberg; Jason M. Aliotta; Mark S. Dooner; Mandy Pereira; Sicheng Wen; Giovanni Camussi

Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung or liver can enter bone marrow cells (this is a prerequisite) and alter their fate toward that of the originating liver and lung tissue. Lung vesicles interacted with bone marrow cells result in the bone marrow cells expressing surfactants A-D, Clara cell protein, and aquaporin-5 mRNA. In a similar vein, liver-derived vesicles induce albumin mRNA in target marrow cells. The vesicles contain protein, mRNA, microRNA, and noncoding RNA and variably some DNA. This genetic package is delivered to cells and alters the phenotype. Further studies have shown that initially the altered phenotype is due to the transfer of mRNA and a transcriptional modulator, but long-term epigenetic changes are induced through transfer of a transcriptional factor, and the mRNA is rapidly degraded in the cell. Studies on the capacity of vesicles to restore injured tissue have been quite informative. Mesenchymal stem cell-derived vesicles are able to reverse the injury to the damaged liver and kidney. Other studies have shown that mesenchymal stem cell-derived vesicles can reverse radiation toxicity of bone marrow stem cells. Extracellular vesicles offer an intriguing strategy for treating a number of diseases characterized by tissue injury.


Leukemia | 2016

Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells.

Sicheng Wen; Mark S. Dooner; Yan Cheng; Elaine Papa; M Del Tatto; Mandy Pereira; Y Deng; Laura R. Goldberg; Jason M. Aliotta; Devasis Chatterjee; C Stewart; A Carpanetto; F Collino; S Bruno; Giovanni Camussi; Peter J. Quesenberry

Mesenchymal stromal cells (MSCs) have been shown to reverse radiation damage to marrow stem cells. We have evaluated the capacity of MSC-derived extracellular vesicles (MSC-EVs) to mitigate radiation injury to marrow stem cells at 4 h to 7 days after irradiation. Significant restoration of marrow stem cell engraftment at 4, 24 and 168 h post irradiation by exposure to MSC-EVs was observed at 3 weeks to 9 months after transplant and further confirmed by secondary engraftment. Intravenous injection of MSC-EVs to 500cGy exposed mice led to partial recovery of peripheral blood counts and restoration of the engraftment of marrow. The murine hematopoietic cell line, FDC-P1 exposed to 500cGy, showed reversal of growth inhibition, DNA damage and apoptosis on exposure to murine or human MSC-EVs. Both murine and human MSC-EVs reverse radiation damage to murine marrow cells and stimulate normal murine marrow stem cell/progenitors to proliferate. A preparation with both exosomes and microvesicles was found to be superior to either microvesicles or exosomes alone. Biologic activity was seen in freshly isolated vesicles and in vesicles stored for up to 6 months in 10% dimethyl sulfoxide at −80 °C. These studies indicate that MSC-EVs can reverse radiation damage to bone marrow stem cells.


Stem Cells and Development | 2012

Progenitor/stem cell fate determination: interactive dynamics of cell cycle and microvesicles.

Jason M. Aliotta; David Lee; Napoleon Puente; Sam Faradyan; Edmund H. Sears; Ashley Amaral; Laura R. Goldberg; Mark S. Dooner; Mandy Pereira; Peter J. Quesenberry

We have shown that hematopoietic stem/progenitor cell phenotype and differentiative potential change throughout cell cycle. Lung-derived microvesicles (LDMVs) also change marrow cell phenotype by inducing them to express pulmonary epithelial cell-specific mRNA and protein. These changes are accentuated when microvesicles isolated from injured lung. We wish to determine if microvesicle-treated stem/progenitor cell phenotype is linked to cell cycle and to the injury status of the lung providing microvesicles. Lineage depleted, Sca-1+ (Lin-/Sca-1+) marrow isolated from mice were cultured with interleukin 3 (IL-3), IL-6, IL-11, and stem cell factor (cytokine-cultured cells), removed at hours zero (cell cycle phase G0/G1), 24 (late G1/early S), and 48 (late S/early G2/M), and cocultured with lung tissue, lung conditioned media (LCM), or LDMV from irradiated or nonirradiated mice. Alternatively, Lin-/Sca-1+ cells not exposed to exogenous cytokines were separated into G0/G1 and S/G2/M cell cycle phase populations by fluorescence-activated cell sorting (FACS) and used in coculture. Separately, LDMV from irradiated and nonirradiated mice were analyzed for the presence of adhesion proteins. Peak pulmonary epithelial cell-specific mRNA expression was seen in G0/G1 cytokine-cultured cells cocultured with irradiated lung and in late G1/early S cells cocultured with nonirradiated lung. The same pattern was seen in cytokine-cultured Lin-/Sca-1 cells cocultured with LCM and LDMV and when FACS-separated Lin-/Sca-1 cells unexposed to exogenous cytokines were used in coculture. Cells and LDMV expressed adhesion proteins whose levels differed based on cycle status (cells) or radiation injury (LDMV), suggesting a mechanism for microvesicle entry. These data demonstrate that microvesicle modification of progenitor/stem cells is influenced by cell cycle and the treatment of the originator lung tissue.


Leukemia | 2014

The murine long-term multi-lineage renewal marrow stem cell is a cycling cell

Laura R. Goldberg; Mark S. Dooner; Kevin W. Johnson; Elaine Papa; Mandy Pereira; M Del Tatto; D M Adler; Jason M. Aliotta; Peter J. Quesenberry

Prevailing wisdom holds that hematopoietic stem cells (HSCs) are predominantly quiescent. Although HSC cycle status has long been the subject of scrutiny, virtually all marrow stem cell research has been based on studies of highly purified HSCs. Here we explored the cell cycle status of marrow stem cells in un-separated whole bone marrow (WBM). We show that a large number of long-term multi-lineage engraftable stem cells within WBM are in S/G2/M phase. Using bromodeoxyuridine, we show rapid transit through the cell cycle of a previously defined relatively dormant purified stem cell, the long-term HSC (LT-HSC; Lineage−/c-kit+/Sca-1+/Flk-2−). Actively cycling marrow stem cells have continually changing phenotype with cell cycle transit, likely rendering them difficult to purify to homogeneity. Indeed, as WBM contains actively cycling stem cells, and highly purified stem cells engraft predominantly while quiescent, it follows that the population of cycling marrow stem cells within WBM are lost during purification. Our studies indicate that both the discarded lineage-positive and lineage-negative marrow cells in a stem cell separation contain cycling stem cells. We propose that future work should encompass this larger population of cycling stem cells that is poorly represented in current studies solely focused on purified stem cell populations.


Gene Therapy | 2003

Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors

Roberto Bilbao; Daniel P. Reay; T Hughes; V Biermann; C Volpers; Laura R. Goldberg; J Bergelson; Stefan Kochanek; Paula R. Clemens

High levels of αv integrin expression by fetal muscle suggested that vector re-targeting to integrins could enhance adenoviral vector-mediated transduction, thereby increasing safety and efficacy of muscle gene transfer in utero. High-capacity adenoviral (HC-Ad) vectors modified by an Arg-Gly-Asp (RGD) peptide motif in the HI loop of the adenoviral fiber (RGD-HC-Ad) have demonstrated efficient gene transfer through binding to αv integrins. To test integrin targeting of HC-Ad vectors for fetal muscle gene transfer, we compared unmodified and RGD-modified HC-Ad vectors. In vivo, unmodified HC-Ad vector transduced fetal mouse muscle with four-fold higher efficiency compared to RGD-HC-Ad vector. Confirming that the difference was due to muscle cell autonomous factors and not mechanical barriers, transduction of primary myogenic cells isolated from murine fetal muscle in vitro demonstrated a three-fold better transduction by HC-Ad vector than by RGD-HC-Ad vector. We hypothesized that the high expression level of coxsackievirus and adenovirus receptor (CAR), demonstrated in fetal muscle cells both in vitro and in vivo, was the crucial variable influencing the relative transduction efficiencies of HC-Ad and RGD-HC-Ad vectors. To explore this further, we studied transduction by HC-Ad and RGD-HC-Ad vectors in paired cell lines that expressed αv integrins and differed only by the presence or absence of CAR expression. The results increase our understanding of factors that will be important for retargeting HC-Ad vectors to enhance gene transfer to fetal muscle.


Stem Cells | 2015

Concise reviews: A stem cell apostasy: a tale of four H words.

Peter J. Quesenberry; Laura R. Goldberg; Mark S. Dooner

The field of hematopoietic stem cell (HSC) biology has become increasingly dominated by the pursuit and study of highly purified populations of HSCs. Such HSCs are typically isolated based on their cell surface marker expression patterns and ultimately defined by their multipotency and capacity for self‐generation. However, even with progressively more stringent stem cell separation techniques, the resultant HSC population remains heterogeneous with respect to both self‐renewal and differentiation capacity. Critical studies on unseparated whole bone marrow have definitively shown that long‐term engraftable HSCs are in active cell cycle and thus continually changing phenotype. Therefore, they cannot be purified by current approaches dependent on stable surface epitope expression because the surface markers are continually changing as well. These critical cycling cells are discarded with current stem cell purifications. Despite this, research defining such characteristics as self‐renewal capacity, lineage‐commitment, bone marrow niches, and proliferative state of HSCs continues to focus predominantly on this small subpopulation of purified marrow cells. This review discusses the research leading to the hierarchical model of hematopoiesis and questions the dogmas pertaining to HSC quiescence and purification. Stem Cells 2015;33:15–20


Frontiers in Oncology | 2014

Marrow hematopoietic stem cells revisited: they exist in a continuum and are not defined by standard purification approaches; then there are the microvesicles

Peter J. Quesenberry; Laura R. Goldberg; Jason M. Aliotta; Mark S. Dooner

Current concepts of hematopoiesis are encompassed in a hierarchical stem cell model. This developed initially from studies of colony-forming unit spleen and in vitro progenitors for different cell lineages, but then evolved into a comprehensive model of cells with different in vivo differentiative and proliferative potential. These cells were characterized and purified based largely on expression of a variety of lineage-specific and stem cell-specific surface epitopes. Monoclonal antibodies were bound to these epitopes and then used to physically and fluorescently separate different classes of these cells. The gold standard for the most primitive marrow stem cells was long-term multilineage repopulation and renewal in lethally irradiated mice. Progressive work seemed to have clonally defined a Lineage negative (Lin−), Sca-1+, c-kit+, CD150+ stem cell with great proliferative, differentiative, and renewal potential. This cell was stable and in the G0 phase of cell cycle. However, continued work in our laboratory indicated that the engraftment, differentiation, homing, and gene expression phenotype of the murine marrow stem cells continuously and reversibly changes with passage through cell cycle. Most recently, using cycle-defining supravital dyes and fluorescent-activated cell sorting and S-phase-specific tritiated thymidine suicide, we have established that the long-term repopulating hematopoietic stem cell is a rapidly proliferating, and thus a continually changing cell; as a corollary it cannot be purified or defined on a clonal single cell basis. Further in vivo studies employing injected and ingested 5-Bromodeoxyuridine (BrdU), showed that the G0 Lin-Sca-1, c-kit+ Flt3− cell was rapidly passing through cell cycle. These data are explained by considering the separative process: the proliferating stem cells are eliminated through the selective separations leaving non-representative dormant G0 stem cells. In other words, they throw out the real stem cells with the purification. This system, where the marrow stem cell continuously and reversibly changes with obligate cell cycle transit, is further complicated by the consideration of the impact of tissue microvesicles on the cell phenotypes. Tissue microvesicles have been found to alter the phenotype of marrow cells, possibly explaining the observations of “stem cell plasticity.” These alterations, short-term, are due to transfer of originator cell mRNA and as yet undefined transcription factors. Long-term phenotype change is due to transcriptional modulation; a stable epigenetic change. Thus, the stem cell system is characterized by continuous cycle and microvesicle-related change. The challenge of the future is to define the stem cell population.


Journal of extracellular vesicles | 2015

Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium

Peter J. Quesenberry; Jason M. Aliotta; Giovanni Camussi; Asim B. Abdel-Mageed; Sicheng Wen; Laura R. Goldberg; Huang-Ge Zhang; Ciro Tetta; Jeffrey L. Franklin; Robert J. Coffey; Kirsty Danielson; Vinita Subramanya; Ionita Ghiran; Saumya Das; Clark C. Chen; Kae M. Pusic; Aya D. Pusic; Devasis Chatterjee; Richard P. Kraig; Leonora Balaj; Mark S. Dooner

The NIH Extracellular RNA Communication Programs initiative on clinical utility of extracellular RNAs and therapeutic agents and developing scalable technologies is reviewed here. Background information and details of the projects are presented. The work has focused on modulation of target cell fate by extracellular vesicles (EVs) and RNA. Work on plant-derived vesicles is of intense interest, and non-mammalian sources of vesicles may represent a very promising source for different therapeutic approaches. Retro-viral-like particles are intriguing. Clearly, EVs share pathways with the assembly machinery of several other viruses, including human endogenous retrovirals (HERVs), and this convergence may explain the observation of viral-like particles containing viral proteins and nucleic acid in EVs. Dramatic effect on regeneration of damaged bone marrow, renal, pulmonary and cardiovascular tissue is demonstrated and discussed. These studies show restoration of injured cell function and the importance of heterogeneity of different vesicle populations. The potential for neural regeneration is explored, and the capacity to promote and reverse neoplasia by EV exposure is described. The tremendous clinical potential of EVs underlies many of these projects, and the importance of regulatory issues and the necessity of general manufacturing production (GMP) studies for eventual clinical trials are emphasized. Clinical trials are already being pursued and should expand dramatically in the near future.


Human Gene Therapy | 2003

Binding of Adenoviral Fiber Knob to the Coxsackievirus- Adenovirus Receptor Is Crucial for Transduction of Fetal Muscle

Roberto Bilbao; Suchitra Srinivasan; Daniel P. Reay; Laura R. Goldberg; Tiffany Hughes; Peter W. Roelvink; David A. Einfeld; Thomas J. Wickham; Paula R. Clemens

Adenoviral (Ad) infection involves attachment mediated by the Ad fiber protein binding to the coxsackievirus-adenovirus receptor (CAR) of a target cell and internalization facilitated by the interaction of the Ad penton base protein with alpha(v) integrins. To understand the relative importance of the Ad binding and internalization steps for the transduction of fetal skeletal muscle, we used a panel of genetically modified vectors that specifically ablate the fiber-CAR interaction (AdL.F*), the penton base-alpha(v) integrin interaction (AdL.PB*), or both (AdL.PB*F*) to transduce embryonic day 16 (E-16) mouse muscle in vivo and primary E-16 muscle cells in vitro. Quantification of transgene expression and vector genome copies revealed a striking absence of E-16 muscle transduction by AdL.F* and AdL.PB*F*. In contrast, fetal muscle transduction with AdL.PB* was not significantly different than with the unmodified vector. Similar results were observed with in vitro Ad infection studies in primary E-16 muscle cells. From these data we conclude that the fiber-CAR interaction is important for the transduction of fetal muscle by Ad vectors. The high dependence on fiber-CAR binding will impact the development of strategies for Ad vector retargeting to achieve muscle-specific transduction in utero.

Collaboration


Dive into the Laura R. Goldberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Cheng

Rhode Island Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge