Elena B. Lomakina
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena B. Lomakina.
Journal of Immunology | 2010
Ronen Sumagin; Hen Prizant; Elena B. Lomakina; Richard E. Waugh; Ingrid H. Sarelius
To exit blood vessels, most (∼80%) of the lumenally adhered monocytes and neutrophils crawl toward locations that support transmigration. Using intravital confocal microscopy of anesthetized mouse cremaster muscle, we separately examined the crawling and emigration patterns of monocytes and neutrophils in blood-perfused unstimulated or TNF-α–activated venules. Most of the interacting cells in microvessels are neutrophils; however, in unstimulated venules, a greater percentage of the total monocyte population is adherent compared with neutrophils (58.2 ± 6.1% versus 13.6 ± 0.9%, adhered/total interacting), and they crawl for significantly longer distances (147.3 ± 13.4 versus 61.8 ± 5.4 μm). Intriguingly, after TNF-α activation, monocytes crawled for significantly shorter distances (67.4 ± 9.6 μm), resembling neutrophil crawling. Using function-blocking Abs, we show that these different crawling patterns were due to CD11a/CD18 (LFA-1)- versus CD11b/CD18 (Mac-1)-mediated crawling. Blockade of either Mac-1 or LFA-1 revealed that both LFA-1 and Mac-1 contribute to monocyte crawling; however, the LFA-1–dependent crawling in unstimulated venules becomes Mac-1 dependent upon inflammation, likely due to increased expression of Mac-1. Mac-1 alone was responsible for neutrophil crawling in both unstimulated and TNF-α–activated venules. Consistent with the role of Mac-1 in crawling, Mac-1 block (compared with LFA-1) was also significantly more efficient in blocking TNF-α–induced extravasation of both monocytes and neutrophils in cremaster tissue and the peritoneal cavity. Thus, mechanisms underlying leukocyte crawling are important in regulating the inflammatory responses by regulating the numbers of leukocytes that transmigrate.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Ronen Sumagin; Elena B. Lomakina; Ingrid H. Sarelius
Two key characteristics of the inflammatory response are the recruitment of leukocytes to inflamed tissue as well as changes in vessel permeability. We explored the relationship between these two processes using intravital confocal microscopy in cremasters of anesthetized (65 mg/kg Nembutal ip) mice. We provide direct evidence that intercellular adhesion molecule-1 (ICAM-1) links leukocyte-endothelial cell interactions and changes in solute permeability (Ps). Importantly, we show that arterioles, not just venules, respond to proinflammatory stimuli, thus contributing to microvascular exchange. We identified two independent, ICAM-1-mediated pathways regulating Ps. Under control conditions in wild-type (WT) mice, there is a constitutive PKC-dependent pathway (Ps = 1.0 +/- 0.10 and 2.2 +/- 0.46 x 10(-6) cm/s in arterioles and venules, respectively), which was significantly reduced in ICAM-1 knockout (KO) mice (Ps = 0.54 +/- 0.07 and 0.77 +/- 0.11 x 10(-6) cm/s). The PKC inhibitor bisindolylmaleimid l (1 micromol/l in 0.01% DMSO) decreased P(s) in WT mice to levels similar to those in ICAM-1 KO mice. Likewise, a PKC activator (phorbol-12-myristate-acetate; 1 micromol/l in 0.01% DMSO) successfully restored Ps in ICAM-1 KO vessels to be not different from that of the WT controls. On the other hand, during TNF-alpha-induced inflammation, Ps in WT mice was significantly increased (2-fold in venules and 2.5-fold in arterioles) in a Src-dependent and PKC-independent manner. The blockade of Src (PP2; 2 micromol/l in 0.01% DMSO) but not PKC significantly reduced the TNF-alpha-dependent increase in Ps. We conclude that ICAM-1 plays an essential role in the regulation of Ps in microvessels and that there are two separate (constitutive and inducible) signaling pathways that regulate permeability under normal and inflamed conditions.
Journal of Experimental Medicine | 2012
Young Min Hyun; Ronen Sumagin; Pranita P. Sarangi; Elena B. Lomakina; Michael G. Overstreet; Christina M. Baker; Deborah J. Fowell; Richard E. Waugh; Ingrid H. Sarelius; Minsoo Kim
Uropod elongation occurs during leukocyte extravasation.
Biophysical Journal | 2004
Elena B. Lomakina; Richard E. Waugh
Strong, integrin-mediated adhesion of neutrophils to endothelium during inflammation is a dynamic process, requiring a conformational change in the integrin molecule to increase its affinity for its endothelial counterreceptors. To avoid general activation of the cell, Mg(2+) was used to induce the high-affinity integrin conformation, and micromechanical methods were used to determine adhesion probability to beads coated with the endothelial ligand ICAM-1. Neutrophils in Mg(2+) bind to the beads with much greater frequency and strength than in the presence of Ca(2+). An increase in adhesion strength and frequency was observed with both increasing temperature and contact duration (from 2 s to 1 min, 21 or 37 degrees C). The dependence of adhesion probability on contact time or receptor density yielded estimates of the effective reverse rate constant, k(r), and the equilibrium association constant, K(a), for binding of neutrophils to ICAM-1 coated surfaces in Mg(2+): k(r) approximately 0.7 s(-1) and the product K(a)rho(c) approximately 2.4 x 10(-4), where rho(c) is the density of integrin on the cell surface.
Biophysical Journal | 2009
Elena B. Lomakina; Richard E. Waugh
Integrin-mediated adhesion of circulating neutrophils to endothelium during inflammation involves multiple adhesion molecules on both neutrophils and endothelium. Most studies of neutrophil adhesion have focused on adhesion to ICAM-1 (mediated by beta(2) integrins), but interaction with the endothelial ligand vascular cell adhesion molecule 1 (VCAM-1) may also play a role in neutrophil adhesion to activated endothelium. In this study we demonstrate significant adhesion between neutrophils and VCAM-1 mediated by beta(1) integrins, principally via alpha(4)beta(1) (VLA-4). We characterize the dynamics of adhesion in terms of rate constants for a two-step bond formation process, the first involving juxtaposition of active molecules with substrate and the second involving bond formation. The results indicate that the first step is rate limiting for VLA-4-VCAM-1 interactions. Changing divalent cation composition affects these coefficients, implicating molecular conformational changes as a key step in the process.
Biophysical Journal | 2014
Elena B. Lomakina; Graham Marsh; Richard E. Waugh
Adhesive interactions between neutrophils and endothelium involve chemokine-induced neutrophil spreading and subsequent crawling on the endothelium to sites of transmigration. We investigated the importance of cell topography in this process using immunofluorescence, scanning electron microscopy, and live-cell imaging using total internal reflectance microscopy to observe redistribution of key membrane proteins, both laterally and relative to surface topography, during neutrophil spreading onto glass coated with interleukin 8. During formation of the lamellipod, L-selectin is distributed on microvilli tips along the top of the lamellipodium, whereas the interleukin 8 receptors CXCR1 and CXCR2 and the integrin LFA-1 (αLβ2) were present at the interface between the lamellipodium and the substrate. Total internal reflection fluorescence imaging indicated that LFA-1 and both chemokine receptors redistributed into closer contact with the substrate as the cells spread onto the surface and remodeled their topography. A geometric model of the surface remodeling with nonuniform distribution of molecules and a realistic distribution of microvilli heights was matched to the data, and the fits indicated a 1000-fold increase in the concentration of chemokine receptors and integrins available for bond formation at the interface. These observations imply that topographical remodeling is a key mechanism for regulating cell adhesion and surface-induced activation of cells.
Biophysical Journal | 2009
Richard E. Waugh; Elena B. Lomakina
The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces.
Annals of Biomedical Engineering | 2015
Michael T. Beste; Elena B. Lomakina; Daniel A. Hammer; Richard E. Waugh
The interaction of leukocytes with surface bound ligands can be limited by the location of the molecules relative to the surface topology of the cell. In this report, we examine the dynamic response of neutrophils to IL-8—fractalkine chimera immobilized on bead surfaces, taking into account changes in receptor occupancy resulting from changes in surface topography. As a readout for receptor signaling, we observe the dynamics of calcium release in neutrophils following contact with the IL-8 coated surface. After a delay that depended on the initial area of contact and the surface density of IL-8, the cell began to phagocytose the IL-8 coated bead. This appeared to be a pre-requisite for release of calcium, which typically followed shortly after the initiation of phagocytosis. In separate experiments, effective kinetic coefficients for the formation of bonds between immobilized IL-8 and receptors on the cell surface were determined. Using these coefficients, we were able to estimate the number of bound receptors in the nascent contact zone. Kinetic modeling of the signaling response predicted that cell spreading and a concomitant increase in the density of occupied receptors would be required for the experimentally observed calcium dynamics. Postulating that there is an increase in receptor occupancy resulting from smoothing of the cell surface as it is stretched over the bead enabled us to obtain model predictions consistent with experimental observations. This study reveals the likely importance of membrane microtopology as a rate-limiting property and potential means of regulation of cell responses stimulated by two-dimensional surface interactions.
Blood Cells Molecules and Diseases | 2009
Elena B. Lomakina; Philip A. Knauf; J. Schultz; Foon-Yee Law; Matthew D. McGraw; Richard E. Waugh
Substituting the medium chloride with glucuronate or glutamate causes a rapid, 10 to 30-fold, increase in the binding of the monoclonal antibody, CBRM1/5, which recognizes the high-affinity conformation of the Mac-1 integrin. This change is reflected in functional adhesion assays that show increased adhesion to ICAM-1 coated beads. Blocking antibodies indicate that the increased adhesion is almost entirely due to Mac-1. The inhibitor NPPB (100 microM) reduces Cl(-) efflux into low Cl(-) medium by 75%, and blocks increased CBRM1/5 binding after stimulation with fMLP or TNF-alpha, but has no effect on the anion substitution induced increase in CBRM1/5 binding or adhesion to immobilized ICAM-1. Thus, changes in external anion composition, not internal chloride or increases in Cl(-) efflux, are responsible for Mac-1 activation. This effect is substantial. The percentage of Mac-1 in the high affinity state approaches 100% in glutamate and 50% in glucuronate, a far greater response than what is observed after stimulation with fMLP.
Principles of Cellular Engineering#R##N#Understanding the Biomolecular Interface | 2006
Elena B. Lomakina; Richard E. Waugh
In this chapter we examine the role that mechanical forces play in the formation of adhesive contacts between leukocytes (principally neutrophils) and an adhesive substrate. After a brief review of the principal molecules involved and their roles in cell recruitment to the endothelium, we summarize fundamental aspects of the kinetics of bond formation at a membrane interface. Mechanisms by which force may enhance the adhesive process cross molecular, microscopic, and macroscopic length scales. At the molecular level, forward rates of reaction may be affected by repulsive interactions between cell surfaces that prevent molecules from interacting. Increasing impingement stress can overcome these repulsive interactions and significantly increase bond formation rates. On a macroscopic level, increasing impingement force increases the area of a contact region, creating increased opportunities for bond formation. At intermediate length scales, microvilli protruding from the cell surface may limit the regions within the macroscopic contact zone where membranes are in molecularly close contact, and mechanical forces can alter the microtopography of the surface, increasing the percentage of area within the macroscopic contact zone where bonds can form. Quantitative examples showing the effects of force through these various mechanisms are presented, demonstrating the substantial effects that force can have on adhesion.