Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena G. Kovaleva is active.

Publication


Featured researches published by Elena G. Kovaleva.


Nature Chemical Biology | 2008

Versatility of biological non-heme Fe(II) centers in oxygen activation reactions

Elena G. Kovaleva; John D. Lipscomb

Oxidase and oxygenase enzymes allow the use of relatively unreactive O2 in biochemical reactions. Many of the mechanistic strategies used in nature for this key reaction are represented within the 2-histidine-1-carboxylate facial triad family of non-heme Fe(II)-containing enzymes. The open face of the metal coordination sphere opposite the three endogenous ligands participates directly in the reaction chemistry. Here, data from several studies are presented showing that reductive O2 activation within this family is initiated by substrate (and in some cases cosubstrate or cofactor) binding, which then allows coordination of O2 to the metal. From this starting point, the O2 activation process and the reactions with substrates diverge broadly. The reactive species formed in these reactions have been proposed to encompass four oxidation states of iron and all forms of reduced O2 as well as several of the reactive oxygen species that derive from O-O bond cleavage.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state

Joseph P. Emerson; Elena G. Kovaleva; Erik R. Farquhar; John D. Lipscomb; Lawrence Que

Biological O2 activation often occurs after binding to a reduced metal [e.g., M(II)] in an enzyme active site. Subsequent M(II)-to-O2 electron transfer results in a reactive M(III)-superoxo species. For the extradiol aromatic ring-cleaving dioxygenases, we have proposed a different model where an electron is transferred from substrate to O2 via the M(II) center to which they are both bound, thereby obviating the need for an integral change in metal redox state. This model is tested by using homoprotocatechuate 2,3-dioxygenases from Brevibacterium fuscum (Fe-HPCD) and Arthrobacter globiformis (Mn-MndD) that share high sequence identity and very similar structures. Despite these similarities, Fe-HPCD binds Fe(II) whereas Mn-MndD incorporates Mn(II). Methods are described to incorporate the nonphysiological metal into each enzyme (Mn-HPCD and Fe-MndD). The x-ray crystal structure of Mn-HPCD at 1.7 Å is found to be indistinguishable from that of Fe-HPCD, while EPR studies show that the Mn(II) sites of Mn-MndD and Mn-HPCD, and the Fe(II) sites of the NO complexes of Fe-HPCD and Fe-MndD, are very similar. The uniform metal site structures of these enzymes suggest that extradiol dioxygenases cannot differentially compensate for the 0.7-V gap in the redox potentials of free iron and manganese. Nonetheless, all four enzymes exhibit nearly the same KM and Vmax values. These enzymes constitute an unusual pair of metallo-oxygenases that remain fully active after a metal swap, implicating a different way by which metals are used to promote oxygen activation without an integral change in metal redox state.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Goniometer-based femtosecond crystallography with X-ray free electron lasers

Aina E. Cohen; S. Michael Soltis; Ana Gonzalez; Laura Aguila; Roberto Alonso-Mori; Christopher O. Barnes; Elizabeth L. Baxter; Winnie Brehmer; Aaron S. Brewster; Axel T. Brunger; Guillermo Calero; Joseph F. Chang; Matthieu Chollet; Paul Ehrensberger; Thomas Eriksson; Yiping Feng; Johan Hattne; Britt Hedman; Michael Hollenbeck; James M. Holton; Stephen Keable; Brian K. Kobilka; Elena G. Kovaleva; Andrew C. Kruse; Henrik T. Lemke; Guowu Lin; Artem Y. Lyubimov; Aashish Manglik; Irimpan I. Mathews; Scott E. McPhillips

Significance The extremely short and bright X-ray pulses produced by X-ray free-electron lasers unlock new opportunities in crystallography-based structural biology research. Efficient methods to deliver crystalline material are necessary due to damage or destruction of the crystal by the X-ray pulse. Crystals for the first experiments were 5 µm or smaller in size, delivered by a liquid injector. We describe a highly automated goniometer-based approach, compatible with crystals of larger and varied sizes, and accessible at cryogenic or ambient temperatures. These methods, coupled with improvements in data-processing algorithms, have resulted in high-resolution structures, unadulterated by the effects of radiation exposure, from only 100 to 1,000 diffraction images. The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Swapping metals in Fe- and Mn-dependent dioxygenases

Joseph P. Emerson; Elena G. Kovaleva; Erik R. Farquhar; John D. Lipscomb; Lawrence Que

Biological O2 activation often occurs after binding to a reduced metal [e.g., M(II)] in an enzyme active site. Subsequent M(II)-to-O2 electron transfer results in a reactive M(III)-superoxo species. For the extradiol aromatic ring-cleaving dioxygenases, we have proposed a different model where an electron is transferred from substrate to O2 via the M(II) center to which they are both bound, thereby obviating the need for an integral change in metal redox state. This model is tested by using homoprotocatechuate 2,3-dioxygenases from Brevibacterium fuscum (Fe-HPCD) and Arthrobacter globiformis (Mn-MndD) that share high sequence identity and very similar structures. Despite these similarities, Fe-HPCD binds Fe(II) whereas Mn-MndD incorporates Mn(II). Methods are described to incorporate the nonphysiological metal into each enzyme (Mn-HPCD and Fe-MndD). The x-ray crystal structure of Mn-HPCD at 1.7 Å is found to be indistinguishable from that of Fe-HPCD, while EPR studies show that the Mn(II) sites of Mn-MndD and Mn-HPCD, and the Fe(II) sites of the NO complexes of Fe-HPCD and Fe-MndD, are very similar. The uniform metal site structures of these enzymes suggest that extradiol dioxygenases cannot differentially compensate for the 0.7-V gap in the redox potentials of free iron and manganese. Nonetheless, all four enzymes exhibit nearly the same KM and Vmax values. These enzymes constitute an unusual pair of metallo-oxygenases that remain fully active after a metal swap, implicating a different way by which metals are used to promote oxygen activation without an integral change in metal redox state.


Biochemistry | 2008

Intermediate in the O-O Bond Cleavage Reaction of an Extradiol Dioxygenase.

Elena G. Kovaleva; John D. Lipscomb

The reactive oxy intermediate of the catalytic cycle of extradiol aromatic ring-cleaving dioxygenases is formed by binding the catecholic substrate and O2 in adjacent ligand positions of the active site metal [usually Fe(II)]. This intermediate and the following Fe(II)-alkylperoxo intermediate resulting from oxygen attack on the substrate have been previously characterized in a crystal of homoprotocatechuate 2,3-dioxygenase (HPCD). Here a subsequent intermediate in which the O-O bond is broken to yield a gem diol species is structurally characterized. This new intermediate is stabilized in the crystal by using the alternative substrate, 4-sulfonylcatechol, and the Glu323Leu variant of HPCD, which alters the crystal packing.


Journal of Biological Inorganic Chemistry | 2011

A hyperactive cobalt-substituted extradiol-cleaving catechol dioxygenase

Andrew J. Fielding; Elena G. Kovaleva; Erik R. Farquhar; John D. Lipscomb; Lawrence Que

Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum (HPCD) has an Fe(II) center in its active site that can be replaced with Mn(II) or Co(II). Whereas Mn-HPCD exhibits steady-state kinetic parameters comparable to those of Fe-HPCD, Co-HPCD behaves somewhat differently, exhibiting significantly higher


Journal of Synchrotron Radiation | 2007

Tracking X-Ray-Derived Redox Changes in Crystals of a Methylamine Dehydrogenase/Amicyanin Complex Using Single-Crystal Uv/Vis Microspectrophotometry.

Arwen R. Pearson; Reinhard Pahl; Elena G. Kovaleva; Victor L. Davidson; Carrie M. Wilmot


Scientific Reports | 2017

Double-flow focused liquid injector for efficient serial femtosecond crystallography.

Dominik Oberthuer; Juraj Knoška; Max O. Wiedorn; Kenneth R. Beyerlein; David A. Bushnell; Elena G. Kovaleva; Michael Heymann; Lars Gumprecht; Richard A. Kirian; Anton Barty; Valerio Mariani; Aleksandra Tolstikova; Luigi Adriano; Salah Awel; Miriam Barthelmess; Katerina Dörner; P. Lourdu Xavier; Oleksandr Yefanov; Daniel James; Garrett Nelson; Dingjie Wang; George Calvey; Yujie Chen; Andrea Schmidt; Michael Szczepek; Stefan Frielingsdorf; Oliver Lenz; Edward H. Snell; Philip J. J. Robinson; Božidar Šarler

K_{\text{M}}^{{{\text{O}}_{ 2} }}


Biochemistry | 2012

Structural basis for the role of tyrosine 257 of homoprotocatechuate 2,3-dioxygenase in substrate and oxygen activation.

Elena G. Kovaleva; John D. Lipscomb


Journal of Biological Inorganic Chemistry | 2016

Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.

Cory J. Knoot; Elena G. Kovaleva; John D. Lipscomb

and kcat. The high activity of Co-HPCD is surprising, given that cobalt has the highest standard M(III/II) redox potential of the three metals. Comparison of the X-ray crystal structures of the resting and substrate-bound forms of Fe-HPCD, Mn-HPCD, and Co-HPCD shows that metal substitution has no effect on the local ligand environment, the conformational integrity of the active site, or the overall protein structure, suggesting that the protein structure does not differentially tune the potential of the metal center. Analysis of the steady-state kinetics of Co-HPCD suggests that the Co(II) center alters the relative rate constants for the interconversion of intermediates in the catalytic cycle but still allows the dioxygenase reaction to proceed efficiently. When compared with the kinetic data for Fe-HPCD and Mn-HPCD, these results show that dioxygenase catalysis can proceed at high rates over a wide range of metal redox potentials. This is consistent with the proposed mechanism in which the metal mediates electron transfer between the catechol substrate and O2 to form the postulated [M(II)(semiquinone)superoxo] reactive species. These kinetic differences and the spectroscopic properties of Co-HPCD provide new tools with which to explore the unique O2 activation mechanism associated with the extradiol dioxygenase family.

Collaboration


Dive into the Elena G. Kovaleva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik R. Farquhar

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth R. Beyerlein

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lawrence Que

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge