Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eli J. Borrego is active.

Publication


Featured researches published by Eli J. Borrego.


Plant Journal | 2013

The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate, and herbivore-induced plant volatile production for defense against insect attack

Shawn A. Christensen; Andriy Nemchenko; Eli J. Borrego; Ian V. J. Murray; Islam S. Sobhy; Liz Bosak; Stacy L. DeBlasio; Matthias Erb; Christelle A. M. Robert; Kathy Vaughn; Cornelia Herrfurth; Jim Tumlinson; Ivo Feussner; David Jackson; Ted C. J. Turlings; Jurgen Engelberth; Christian Nansen; Robert B. Meeley; Michael V. Kolomiets

Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro-economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling is required for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.


Molecular Plant Pathology | 2014

Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection

Rachel Ozalvo; Javier Cabrera; Carolina Escobar; Shawn A. Christensen; Eli J. Borrego; Michael V. Kolomiets; Carmen Castresana; Ionit Iberkleid; Sigal Brown Horowitz

The responses of two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, to infection by the sedentary nematodes root-knot nematode (Meloidogyne javanica) and cyst nematode (Heterodera schachtii) were analysed in transgenic Arabidopsis seedlings. The tissue localization of LOX3 and LOX4 gene expression using β-glucuronidase (GUS) reporter gene constructs showed local induction of LOX3 expression when second-stage juveniles reached the vascular bundle and during the early stages of plant-nematode interaction through gall and syncytia formation. Thin sections of nematode-infested knots indicated LOX3 expression in mature giant cells, and high expression in neighbouring cells and those surrounding the female body. LOX4 promoter was also activated by nematode infection, although the GUS signal weakened as infection and disease progressed. Homozygous insertion mutants lacking LOX3 were less susceptible than wild-type plants to root-knot nematode infection, as reflected by a decrease in female counts. Conversely, deficiency in LOX4 function led to a marked increase in females and egg mass number and in the female to male ratio of M. javanica and H. schachtii, respectively. The susceptibility of lox4 mutants was accompanied by increased expression of allene oxide synthase, allene oxide cyclase and ethylene-responsive transcription factor 4, and the accumulation of jasmonic acid, measured in the roots of lox4 mutants. This response was not found in lox3 mutants. Taken together, our results reveal that LOX4 and LOX3 interfere differentially with distinct metabolic and signalling pathways, and that LOX4 plays a major role in controlling plant defence against nematode infection.


Molecular Plant-microbe Interactions | 2014

The Novel Monocot-Specific 9-Lipoxygenase ZmLOX12 Is Required to Mount an Effective Jasmonate-Mediated Defense Against Fusarium verticillioides in Maize

Shawn A. Christensen; Andriy Nemchenko; Yong-Soon Park; Eli J. Borrego; Pei-Cheng Huang; Eric A. Schmelz; Susan Kunze; Ivo Feussner; Nasser Yalpani; Robert B. Meeley; Michael V. Kolomiets

Fusarium verticillioides is a major limiting factor for maize production due to ear and stalk rot and the contamination of seed with the carcinogenic mycotoxin fumonisin. While lipoxygenase (LOX)-derived oxylipins have been implicated in defense against diverse pathogens, their function in maize resistance against F. verticillioides is poorly understood. Here, we functionally characterized a novel maize 9-LOX gene, ZmLOX12. This gene is distantly related to known dicot LOX genes, with closest homologs found exclusively in other monocot species. ZmLOX12 is predominantly expressed in mesocotyls in which it is strongly induced in response to F. verticillioides infection. The Mutator transposon-insertional lox12-1 mutant is more susceptible to F. verticillioides colonization of mesocotyls, stalks, and kernels. The infected mutant kernels accumulate a significantly greater amount of the mycotoxin fumonisin. Reduced resistance to the pathogen is accompanied by diminished levels of the jasmonic acid (JA) precursor 12-oxo phytodienoic acid, JA-isoleucine, and expression of jasmonate-biosynthetic genes. Supporting the strong defense role of jasmonates, the JA-deficient opr7 opr8 double mutant displayed complete lack of immunity to F. verticillioides. Unexpectedly, the more susceptible lox12 mutant accumulated higher levels of kauralexins, suggesting that F. verticillioides is tolerant to this group of antimicrobial phytoalexins. This study demonstrates that this unique monocot-specific 9-LOX plays a key role in defense against F. verticillioides in diverse maize tissues and provides genetic evidence that JA is the major defense hormone against this pathogen.


Archive | 2013

Jasmonate Biosynthesis, Perception and Function in Plant Development and Stress Responses

Yuanxin Yan; Eli J. Borrego; Michael V. Kolomiets

© 2013 Kolomiets et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Jasmonate Biosynthesis, Perception and Function in Plant Development and Stress Responses


Journal of Visualized Experiments | 2012

Quantification of Fungal Colonization, Sporogenesis, and Production of Mycotoxins Using Kernel Bioassays

Shawn A. Christensen; Eli J. Borrego; Won-Bo Shim; Tom Isakeit; Michael V. Kolomiets

The rotting of grains by seed-infecting fungi poses one of the greatest economic challenges to cereal production worldwide, not to mention serious risks to human and animal health. Among cereal production, maize is arguably the most affected crop, due to pathogen-induced losses in grain integrity and mycotoxin seed contamination. The two most prevalent and problematic mycotoxins for maize growers and food and feed processors are aflatoxin and fumonisin, produced by Aspergillus flavus and Fusarium verticillioides, respectively. Recent studies in molecular plant-pathogen interactions have demonstrated promise in understanding specific mechanisms associated with plant responses to fungal infection and mycotoxin contamination(1,2,3,4,5,6). Because many labs are using kernel assays to study plant-pathogen interactions, there is a need for a standardized method for quantifying different biological parameters, so results from different laboratories can be cross-interpreted. For a robust and reproducible means for quantitative analyses on seeds, we have developed in-lab kernel assays and subsequent methods to quantify fungal growth, biomass, and mycotoxin contamination. Four sterilized maize kernels are inoculated in glass vials with a fungal suspension (10(6)) and incubated for a predetermined period. Sample vials are then selected for enumeration of conidia by hemocytometer, ergosterol-based biomass analysis by high performance liquid chromatography (HPLC), aflatoxin quantification using an AflaTest fluorometer method, and fumonisin quantification by HPLC.


Frontiers in Plant Science | 2013

Root-expressed maize lipoxygenase 3 negatively regulates induced systemic resistance to Colletotrichum graminicola in shoots

Nasie N. Constantino; Fatemeh Mastouri; Ramadhika Damarwinasis; Eli J. Borrego; Maria E. Moran-Diez; Charley M. Kenerley; Xiquan Gao; Michael V. Kolomiets

We have previously reported that disruption of a maize root-expressed 9-lipoxygenase (9-LOX) gene, ZmLOX3, results in dramatic increase in resistance to diverse leaf and stalk pathogens. Despite evident economic significance of these findings, the mechanism behind this increased resistance remained elusive. In this study, we found that increased resistance of the lox3-4 mutants is due to constitutive activation of induced systemic resistance (ISR) signaling. We showed that ZmLOX3 lacked expression in leaves in response to anthracnose leaf blight pathogen Colletotrichum graminicola, but was expressed constitutively in the roots, thus, prompting our hypothesis: the roots of lox3-4 mutants are the source of increased resistance in leaves. Supporting this hypothesis, treatment of wild-type plants (WT) with xylem sap of lox3-4 mutant induced resistance to C. graminicola to the levels comparable to those observed in lox3-4 mutant. Moreover, treating mutants with the sap collected from WT plants partially restored the susceptibility to C. graminicola. lox3-4 mutants showed primed defense responses upon infection, which included earlier and greater induction of defense-related PAL and GST genes compared to WT. In addition to the greater expression of the octadecanoid pathway genes, lox3-4 mutant responded earlier and with a greater accumulation of H2O2 in response to C. graminicola infection or treatment with alamethicin. These findings suggest that lox3-4 mutants display constitutive ISR-like signaling. In support of this idea, root colonization by Trichoderma virens strain GV29-8 induced the same level of disease resistance in WT as the treatment with the mutant sap, but had no additional resistance effect in lox3-4 mutant. While treatment with T. virens GV29 strongly and rapidly suppressed ZmLOX3 expression in hydroponically grown WT roots, T. virens Δsml mutant, which is deficient in ISR induction, was unable to suppress expression of ZmLOX3, thus, providing genetic evidence that SM1 function in ISR, at least in part, by suppressing host ZmLOX3 gene. This study and the genetic tools generated herein will allow the identification of the signals regulating the induction of resistance to aboveground attackers by beneficial soil microorganisms in the future.


Plants (Basel, Switzerland) | 2016

Synthesis and Functions of Jasmonates in Maize

Eli J. Borrego; Michael V. Kolomiets

Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA) remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins in diverse physiological processes. JA serves as the model plant oxylipin species and regulates defense and development. For several decades, the biology of JA has been characterized in a few dicot species, yet the function of JA in monocots has only recently begun to be elucidated. In this work, the synthesis and function of JA in maize is presented from the perspective of oxylipin biology. The maize genes responsible for catalyzing the reactions in the JA biosynthesis are clarified and described. Recent studies into the function of JA in maize defense against insect herbivory, pathogens and its role in growth and development are highlighted. Additionally, a list of JA-responsive genes is presented for use as biological markers for improving future investigations into JA signaling in maize.


Archive | 2012

Lipid-Mediated Signaling Between Fungi and Plants

Eli J. Borrego; Michael V. Kolomiets

Lipid-mediated inter-kingdom signaling in plant-fungal interactions is the exchange of molecules between plants and fungal pathogens and symbiotes. Recently these interactions were implicated in determining whether inter-organismal interactions result in parasitism, symbiosis or commencialism. Lipids constitute a very large group of structurally diverse molecules that have diverse functions in cell metabolism. One group of lipids, oxygenated lipids (oxylipins), is gaining increased interest as molecular signals that orchestrate a myriad of metabolic processes in both plants and fungi. Growing momentum implicates these metabolites as key players during the signal exchange between different interacting organisms. Recent studies have revealed oxylipins as key regulators of sporulation and secondary metabolite production while others have discovered their roles in manipulating plant metabolism and defense responses for the advantage of fungal and other pathogens. The focus of this chapter is to describe recent advances in our understanding of oxylipin-mediated signal communication between fungi and plants, highlighting pathogenic systems.


Proceedings of the National Academy of Sciences of the United States of America | 2017

In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy

Narangerel Altangerel; Gombojav O. Ariunbold; Connor Gorman; Masfer H. Alkahtani; Eli J. Borrego; Dwight Bohlmeyer; P. R. Hemmer; Michael V. Kolomiets; Joshua S. Yuan; Marlan O. Scully

Significance Feeding a population of 9 billion in 2050 coupled with the changing climate and environmental stresses motivate us to develop advances in plant science and technology. We present a high-throughput plant phenotyping platform for detection of abiotic stress. The proposed Raman spectroscopic technique for high-throughput stress phenotyping and early stress detection in vivo improves sensitivity with the ability to interrogate individual molecules simultaneously in plants. This technology holds promise for mobile automated systems and precision agriculture. Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.


Frontiers in Plant Science | 2017

Seed-Derived Ethylene Facilitates Colonization but Not Aflatoxin Production by Aspergillus flavus in Maize

Shi Wang; Yong-Soon Park; Yang Yang; Eli J. Borrego; Tom Isakeit; Xiquan Gao; Michael V. Kolomiets

Ethylene (ET) emitted by plant tissues has been broadly reported to play important roles in plant development, response to environmental stresses and defense against certain pathogens. Recent evidence obtained from using in vitro fungal cultures exposed to ET suggested that exogenous ET may regulate the production of aflatoxin by Aspergilli. However, the function of endogenous, seed-derived ET has not been explored. In this study, we found that the maize lipoxygenase lox3 mutant, previously reported to be susceptible to Aspergillus spp., emitted greater levels of ET upon A. flavus infection, suggesting the potential involvement of endogenous ET in the susceptibility of maize to A. flavus. Supporting this idea, both colonization and conidiation of A. flavus were reduced in wild-type (WT) kernels treated with AgNO3, an ET synthesis inhibitor. There was no ET emission from non-viable kernels colonized by A. flavus, suggesting that living seed but not the fungus itself was the primary source of ET released upon infection with A. flavus. The kernels of acs2 and acs6, two ET biosynthetic mutants carrying Mutator transposons in the ACC synthase genes, ACS2 and ACS6, respectively, displayed enhanced seed colonization and conidiation, but not the levels of aflatoxin, upon infection with A. flavus. Surprisingly, both acs2 and acs6 mutant kernels emitted greater levels of ET in response to infection by A. flavus as compared with WT seed. The increased ET in single mutants was found to be due to overexpression of functional ACS genes in response to A. flavus infection. Collectively, these findings suggested that ET emitted by infected seed facilitates colonization by A. flavus but not aflatoxin production.

Collaboration


Dive into the Eli J. Borrego's collaboration.

Top Co-Authors

Avatar

Shawn A. Christensen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge