Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shawn A. Christensen is active.

Publication


Featured researches published by Shawn A. Christensen.


Fungal Genetics and Biology | 2011

The lipid language of plant-fungal interactions.

Shawn A. Christensen; Michael V. Kolomiets

Lipid mediated cross-kingdom communication between hosts and pathogens is a rapidly emerging field in molecular plant-fungal interactions. Amidst our growing understanding of fungal and plant chemical cross-talk lies the distinct, yet little studied, role for a group of oxygenated lipids derived from polyunsaturated fatty acids, termed oxylipins. Endogenous fungal oxylipins are known for their roles in carrying out pathogenic strategies to successfully colonize their host, reproduce, and synthesize toxins. While plant oxylipins also have functions in reproduction and development, they are largely recognized as agents that facilitate resistance to pathogen attack. Here we review the composition and endogenous functions of oxylipins produced by both plants and fungi and introduce evidence which suggests that fungal pathogens exploit host oxylipins to facilitate their own virulence and pathogenic development. Specifically, we describe how fungi induce plant lipid metabolism to utilize plant oxylipins in order to promote G-protein-mediated regulation of sporulation and mycotoxin production in the fungus. The use of host-ligand mimicry (i.e. coronatine) to manipulate plant defense responses that benefit the fungus are also implicated.


Plant Journal | 2013

The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate, and herbivore-induced plant volatile production for defense against insect attack

Shawn A. Christensen; Andriy Nemchenko; Eli J. Borrego; Ian V. J. Murray; Islam S. Sobhy; Liz Bosak; Stacy L. DeBlasio; Matthias Erb; Christelle A. M. Robert; Kathy Vaughn; Cornelia Herrfurth; Jim Tumlinson; Ivo Feussner; David Jackson; Ted C. J. Turlings; Jurgen Engelberth; Christian Nansen; Robert B. Meeley; Michael V. Kolomiets

Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro-economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling is required for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.


The Plant Cell | 2012

Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense

Yuanxin Yan; Shawn A. Christensen; Tom Isakeit; Jurgen Engelberth; Robert B. Meeley; Allison Hayward; R. J. Neil Emery; Michael V. Kolomiets

Maize OPR7 and OPR8 are redundant paralogs responsible for JA biosynthesis. Double mutation in both genes revealed diverse roles of JA in developmental and defense processes, including regulation of sex determination and female organ outgrowth, anthocyanin pigmentation, leaf senescence, and immunity against insects and pathogens. Here, multiple functions of jasmonic acid (JA) in maize (Zea mays) are revealed by comprehensive analyses of JA-deficient mutants of the two oxo-phytodienoate reductase genes, OPR7 and OPR8. Single mutants produce wild-type levels of JA in most tissues, but the double mutant opr7 opr8 has dramatically reduced JA in all organs tested. opr7 opr8 displayed strong developmental defects, including formation of a feminized tassel, initiation of female reproductive buds at each node, and extreme elongation of ear shanks; these defects were rescued by exogenous JA. These data provide evidence that JA is required for male sex determination and suppression of female reproductive organ biogenesis. Moreover, opr7 opr8 exhibited delayed leaf senescence accompanied by reduced ethylene and abscisic acid levels and lack of anthocyanin pigmentation of brace roots. Remarkably, opr7 opr8 is nonviable in nonsterile soil and under field conditions due to extreme susceptibility to a root-rotting oomycete (Pythium spp), demonstrating that these genes are necessary for maize survival in nature. Supporting the importance of JA in insect defense, opr7 opr8 is susceptible to beet armyworm. Overall, this study provides strong genetic evidence for the global roles of JA in maize development and immunity to pathogens and insects.


Plant Cell and Environment | 2014

Effects of elevated [CO2] on maize defence against mycotoxigenic Fusarium verticillioides

Martha Vaughan; Alisa Huffaker; Eric A. Schmelz; Nicole J. Dafoe; Shawn A. Christensen; James Sims; Vitor F. Martins; Jay Swerbilow; Maritza Romero; Hans T. Alborn; L. H. Allen; Peter E. A. Teal

Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO2] will effect maize defences against such pathogens is limited. Here we report that elevated [CO2] increases maize susceptibility to Fusarium verticillioides proliferation, while mycotoxin levels are unaltered. Fumonisin production is not proportional to the increase in F. verticillioides biomass, and the amount of fumonisin produced per unit pathogen is reduced at elevated [CO2]. Following F. verticillioides stalk inoculation, the accumulation of sugars, free fatty acids, lipoxygenase (LOX) transcripts, phytohormones and downstream phytoalexins is dampened in maize grown at elevated [CO2]. The attenuation of maize 13-LOXs and jasmonic acid production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2]. Our findings suggest that elevated [CO2] will compromise maize LOX-dependent signalling, which will influence the interactions between maize and mycotoxigenic fungi. Elevated [CO2] increases maize susceptibility to Fusarium verticillioides proliferation but mycotoxin levels are unaltered. The attenuation of maize 13-LOXs and JA production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2].


Plant Cell and Environment | 2015

Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance.

Martha Vaughan; Shawn A. Christensen; Eric A. Schmelz; Alisa Huffaker; Heather J. McAuslane; Hans T. Alborn; Maritza Romero; L. H. Allen; Peter E. A. Teal

Maize (Zea mays) production, which is of global agro-economic importance, is largely limited by herbivore pests, pathogens and environmental conditions, such as drought. Zealexins and kauralexins belong to two recently identified families of acidic terpenoid phytoalexins in maize that mediate defence against both pathogen and insect attacks in aboveground tissues. However, little is known about their function in belowground organs and their potential to counter abiotic stress. In this study, we show that zealexins and kauralexins accumulate in roots in response to both biotic and abiotic stress including, Diabrotica balteata herbivory, Fusarium verticillioides infection, drought and high salinity. We find that the quantity of drought-induced phytoalexins is positively correlated with the root-to-shoot ratio of different maize varieties, and further demonstrate that mutant an2 plants deficient in kauralexin production are more sensitive to drought. The induction of phytoalexins in response to drought is root specific and does not influence phytoalexin levels aboveground; however, the accumulation of phytoalexins in one tissue may influence the induction capacity of other tissues.


Molecular Plant Pathology | 2014

Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection

Rachel Ozalvo; Javier Cabrera; Carolina Escobar; Shawn A. Christensen; Eli J. Borrego; Michael V. Kolomiets; Carmen Castresana; Ionit Iberkleid; Sigal Brown Horowitz

The responses of two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, to infection by the sedentary nematodes root-knot nematode (Meloidogyne javanica) and cyst nematode (Heterodera schachtii) were analysed in transgenic Arabidopsis seedlings. The tissue localization of LOX3 and LOX4 gene expression using β-glucuronidase (GUS) reporter gene constructs showed local induction of LOX3 expression when second-stage juveniles reached the vascular bundle and during the early stages of plant-nematode interaction through gall and syncytia formation. Thin sections of nematode-infested knots indicated LOX3 expression in mature giant cells, and high expression in neighbouring cells and those surrounding the female body. LOX4 promoter was also activated by nematode infection, although the GUS signal weakened as infection and disease progressed. Homozygous insertion mutants lacking LOX3 were less susceptible than wild-type plants to root-knot nematode infection, as reflected by a decrease in female counts. Conversely, deficiency in LOX4 function led to a marked increase in females and egg mass number and in the female to male ratio of M. javanica and H. schachtii, respectively. The susceptibility of lox4 mutants was accompanied by increased expression of allene oxide synthase, allene oxide cyclase and ethylene-responsive transcription factor 4, and the accumulation of jasmonic acid, measured in the roots of lox4 mutants. This response was not found in lox3 mutants. Taken together, our results reveal that LOX4 and LOX3 interfere differentially with distinct metabolic and signalling pathways, and that LOX4 plays a major role in controlling plant defence against nematode infection.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators

Shawn A. Christensen; Alisa Huffaker; Fatma Kaplan; James Sims; Sebastian Ziemann; Gunther Doehlemann; Lexiang Ji; Robert J. Schmitz; Michael V. Kolomiets; Hans T. Alborn; Naoki Mori; Georg Jander; Xinzhi Ni; Ryan Sartor; Sara Byers; Zaid Abdo; Eric A. Schmelz

Significance In plants, 12-oxo-phytodienoic acid (12-OPDA) and jasmonic acid are key 13-lipoxygenase-derived linolenate oxidation products termed jasmonates that regulate diverse processes in development and innate immunity. A less-studied metabolic pathway branch is generated by 9-lipoxygenase activity on linoleic acid, enabling the production of 10-oxo-11-phytoenoic acid (10-OPEA). In maize, fungal infection by southern leaf blight (Cochliobolus heterostrophus) results in the localized production of 10-OPEA, and a series of related 12- and 14-carbon cyclopente(a)nones, collectively termed “death acids” (DAs). DAs far exceed jasmonates in abundance within infected tissues, display direct phytoalexin activity against biotic agents, mediate defense gene expression, and can promote cytotoxicity resulting in cell death. Collectively DA activities are consistent with specialized local roles in plant defense. Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed “jasmonates.” As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed “death acids.” 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.


Molecular Plant-microbe Interactions | 2014

The Novel Monocot-Specific 9-Lipoxygenase ZmLOX12 Is Required to Mount an Effective Jasmonate-Mediated Defense Against Fusarium verticillioides in Maize

Shawn A. Christensen; Andriy Nemchenko; Yong-Soon Park; Eli J. Borrego; Pei-Cheng Huang; Eric A. Schmelz; Susan Kunze; Ivo Feussner; Nasser Yalpani; Robert B. Meeley; Michael V. Kolomiets

Fusarium verticillioides is a major limiting factor for maize production due to ear and stalk rot and the contamination of seed with the carcinogenic mycotoxin fumonisin. While lipoxygenase (LOX)-derived oxylipins have been implicated in defense against diverse pathogens, their function in maize resistance against F. verticillioides is poorly understood. Here, we functionally characterized a novel maize 9-LOX gene, ZmLOX12. This gene is distantly related to known dicot LOX genes, with closest homologs found exclusively in other monocot species. ZmLOX12 is predominantly expressed in mesocotyls in which it is strongly induced in response to F. verticillioides infection. The Mutator transposon-insertional lox12-1 mutant is more susceptible to F. verticillioides colonization of mesocotyls, stalks, and kernels. The infected mutant kernels accumulate a significantly greater amount of the mycotoxin fumonisin. Reduced resistance to the pathogen is accompanied by diminished levels of the jasmonic acid (JA) precursor 12-oxo phytodienoic acid, JA-isoleucine, and expression of jasmonate-biosynthetic genes. Supporting the strong defense role of jasmonates, the JA-deficient opr7 opr8 double mutant displayed complete lack of immunity to F. verticillioides. Unexpectedly, the more susceptible lox12 mutant accumulated higher levels of kauralexins, suggesting that F. verticillioides is tolerant to this group of antimicrobial phytoalexins. This study demonstrates that this unique monocot-specific 9-LOX plays a key role in defense against F. verticillioides in diverse maize tissues and provides genetic evidence that JA is the major defense hormone against this pathogen.


Journal of Visualized Experiments | 2012

Quantification of Fungal Colonization, Sporogenesis, and Production of Mycotoxins Using Kernel Bioassays

Shawn A. Christensen; Eli J. Borrego; Won-Bo Shim; Tom Isakeit; Michael V. Kolomiets

The rotting of grains by seed-infecting fungi poses one of the greatest economic challenges to cereal production worldwide, not to mention serious risks to human and animal health. Among cereal production, maize is arguably the most affected crop, due to pathogen-induced losses in grain integrity and mycotoxin seed contamination. The two most prevalent and problematic mycotoxins for maize growers and food and feed processors are aflatoxin and fumonisin, produced by Aspergillus flavus and Fusarium verticillioides, respectively. Recent studies in molecular plant-pathogen interactions have demonstrated promise in understanding specific mechanisms associated with plant responses to fungal infection and mycotoxin contamination(1,2,3,4,5,6). Because many labs are using kernel assays to study plant-pathogen interactions, there is a need for a standardized method for quantifying different biological parameters, so results from different laboratories can be cross-interpreted. For a robust and reproducible means for quantitative analyses on seeds, we have developed in-lab kernel assays and subsequent methods to quantify fungal growth, biomass, and mycotoxin contamination. Four sterilized maize kernels are inoculated in glass vials with a fungal suspension (10(6)) and incubated for a predetermined period. Sample vials are then selected for enumeration of conidia by hemocytometer, ergosterol-based biomass analysis by high performance liquid chromatography (HPLC), aflatoxin quantification using an AflaTest fluorometer method, and fumonisin quantification by HPLC.


Molecular Ecology | 2015

Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar‐induced aphid resistance in maize

Vered Tzin; Penelope L. Lindsay; Shawn A. Christensen; Lisa N. Meihls; Levi B. Blue; Georg Jander

Plants in nature have inducible defences that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within‐species variation in such plant‐mediated interactions between herbivores. Beet armyworms (Spodoptera exigua) and corn leaf aphids (Rhopalosiphum maidis) are two naturally occurring maize herbivores with different feeding habits. Whereas chewing herbivore‐induced methylation of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one glucoside (DIMBOA‐Glc) to form 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one glucoside (HDMBOA‐Glc) promotes caterpillar resistance, lower DIMBOA‐Glc levels favour aphid reproduction. Thus, caterpillar‐induced DIMBOA‐Glc methyltransferase activity in maize is predicted to promote aphid growth. To test this hypothesis, the impact of S. exigua feeding on R. maidis progeny production was assessed using seventeen genetically diverse maize inbred lines. Whereas aphid progeny production was increased by prior caterpillar feeding on lines B73, Ki11, Ki3 and Tx303, it decreased on lines Ky21, CML103, Mo18W and W22. Genetic mapping of this trait in a population of B73 × Ky21 recombinant inbred lines identified significant quantitative trait loci on maize chromosomes 1, 7 and 10. There is a transgressive segregation for aphid resistance, with the Ky21 alleles on chromosomes 1 and 7 and the B73 allele on chromosome 10 increasing aphid progeny production. The chromosome 1 QTL coincides with a cluster of three maize genes encoding benzoxazinoid O‐methyltransferases that convert DIMBOA‐Glc to HDMBOA‐Glc. Gene expression studies and benzoxazinoid measurements indicate that S. exigua ‐induced responses in this pathway differentially affect R. maidis resistance in B73 and Ky21.

Collaboration


Dive into the Shawn A. Christensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans T. Alborn

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Alisa Huffaker

University of California

View shared research outputs
Top Co-Authors

Avatar

Anna Block

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Charles T. Hunter

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Martha Vaughan

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Jander

Boyce Thompson Institute for Plant Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge