Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael V. Kolomiets is active.

Publication


Featured researches published by Michael V. Kolomiets.


Plant Physiology | 2007

A Proteinaceous Elicitor Sm1 from the Beneficial Fungus Trichoderma virens Is Required for Induced Systemic Resistance in Maize

Slavica Djonović; Walter A. Vargas; Michael V. Kolomiets; Michelle Horndeski; Aric Wiest; Charles M. Kenerley

We have previously shown that the beneficial filamentous fungus Trichoderma virens secretes the highly effective hydrophobin-like elicitor Sm1 that induces systemic disease resistance in the dicot cotton (Gossypium hirsutum). In this study we tested whether colonization of roots by T. virens can induce systemic protection against a foliar pathogen in the monocot maize (Zea mays), and we further demonstrated the importance of Sm1 during maize-fungal interactions using a functional genomics approach. Maize seedlings were inoculated with T. virens Gv29-8 wild type and transformants in which SM1 was disrupted or constitutively overexpressed in a hydroponic system or in soil-grown maize seedlings challenged with the pathogen Colletotrichum graminicola. We show that similar to dicot plants, colonization of maize roots by T. virens induces systemic protection of the leaves inoculated with C. graminicola. This protection was associated with notable induction of jasmonic acid- and green leaf volatile-biosynthetic genes. Neither deletion nor overexpression of SM1 affected normal growth or development of T. virens, conidial germination, production of gliotoxin, hyphal coiling, hydrophobicity, or the ability to colonize maize roots. Plant bioassays showed that maize grown with SM1-deletion strains exhibited the same levels of systemic protection as non-Trichoderma-treated plants. Moreover, deletion and overexpression of SM1 resulted in significantly reduced and enhanced levels of disease protection, respectively, compared to the wild type. These data together indicate that T. virens is able to effectively activate systemic disease protection in maize and that the functional Sm1 elicitor is required for this activity.


Fungal Genetics and Biology | 2011

The lipid language of plant-fungal interactions.

Shawn A. Christensen; Michael V. Kolomiets

Lipid mediated cross-kingdom communication between hosts and pathogens is a rapidly emerging field in molecular plant-fungal interactions. Amidst our growing understanding of fungal and plant chemical cross-talk lies the distinct, yet little studied, role for a group of oxygenated lipids derived from polyunsaturated fatty acids, termed oxylipins. Endogenous fungal oxylipins are known for their roles in carrying out pathogenic strategies to successfully colonize their host, reproduce, and synthesize toxins. While plant oxylipins also have functions in reproduction and development, they are largely recognized as agents that facilitate resistance to pathogen attack. Here we review the composition and endogenous functions of oxylipins produced by both plants and fungi and introduce evidence which suggests that fungal pathogens exploit host oxylipins to facilitate their own virulence and pathogenic development. Specifically, we describe how fungi induce plant lipid metabolism to utilize plant oxylipins in order to promote G-protein-mediated regulation of sporulation and mycotoxin production in the fungus. The use of host-ligand mimicry (i.e. coronatine) to manipulate plant defense responses that benefit the fungus are also implicated.


Molecular Plant-microbe Interactions | 2007

Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin.

Xiquan Gao; Won-Bo Shim; Cornelia Göbel; Susan Kunze; Ivo Feussner; Robert B. Meeley; Peter J. Balint-Kurti; Michael V. Kolomiets

Plant oxylipins, produced via the lipoxygenase (LOX) pathway, function as signals in defense and development. In fungi, oxylipins are potent regulators of mycotoxin biosynthesis and sporogenesis. Previous studies showed that plant 9-LOX-derived fatty acid hydroperoxides induce conidiation and mycotoxin production. Here, we tested the hypothesis that oxylipins produced by the maize 9-LOX pathway are required by pathogens to produce spores and mycotoxins and to successfully colonize the host. Maize mutants were generated in which the function of a 9-LOX gene, ZmLOX3, was abolished by an insertion of a Mutator transposon in its coding sequence, which resulted in reduced levels of several 9-LOX-derived hydroperoxides. Supporting our hypothesis, conidiation and production of the mycotoxin fumonisin B1 by Fusarium verticillioides were drastically reduced in kernels of the lox3 mutants compared with near-isogenic wild types. Similarly, conidia production and disease severity of anthracnose leaf blight caused by Colletotrichum graminicola were significantly reduced in the lox3 mutants. Moreover, lox3 mutants displayed increased resistance to southern leaf blight caused by Cochliobolus heterostrophus and stalk rots caused by both F. verticillioides and C. graminicola. These data strongly suggest that oxylipin metabolism mediated by a specific plant 9-LOX isoform is required for fungal pathogenesis, including disease development and production of spores and mycotoxins.


Molecular Plant-microbe Interactions | 2008

Maize 9-Lipoxygenase ZmLOX3 Controls Development, Root-Specific Expression of Defense Genes, and Resistance to Root-Knot Nematodes

Xiquan Gao; J. L. Starr; Cornelia Göbel; Jurgen Engelberth; Ivo Feussner; James H. Tumlinson; Michael V. Kolomiets

Root-knot nematodes (RKN) are severe pests of maize. Although lipoxygenase (LOX) pathways and their oxylipin products have been implicated in plant-nematode interactions, prior to this report there was no conclusive genetic evidence for the function of any plant LOX gene in such interactions. We showed that expression of a maize 9-LOX gene, ZmLOX3, increased steadily and peaked at 7 days after inoculation with Meloidogyne incognita RKN. Mu-insertional lox3-4 mutants displayed increased attractiveness to RKN and an increased number of juveniles and eggs. A set of jasmonic acid (JA)- and ethylene (ET)-responsive and biosynthetic genes as well as salicylic acid (SA)-dependent genes were overexpressed specifically in the roots of lox3-4 mutants. Consistent with this, levels of JA, SA, and ET were elevated in lox3-4 mutant roots, but not in leaves. Unlike wild types, in lox3-4 mutant roots, a phenylalanine ammonia lyase (PAL) gene was not RKN-inducible, suggesting a role for PAL-mediated metabolism in nematode resistance. In addition to these alterations in the defense status of roots, lox3-4 knockout mutants displayed precocious senescence and reduced root length and plant height compared with the wild type, suggesting that ZmLOX3 is required for normal plant development. Taken together, our data indicate that the ZmLOX3-mediated pathway may act as a root-specific suppressor of all three major defense signaling pathways to channel plant energy into growth processes, but is required for normal levels of resistance against nematodes.


Plant Journal | 2013

The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate, and herbivore-induced plant volatile production for defense against insect attack

Shawn A. Christensen; Andriy Nemchenko; Eli J. Borrego; Ian V. J. Murray; Islam S. Sobhy; Liz Bosak; Stacy L. DeBlasio; Matthias Erb; Christelle A. M. Robert; Kathy Vaughn; Cornelia Herrfurth; Jim Tumlinson; Ivo Feussner; David Jackson; Ted C. J. Turlings; Jurgen Engelberth; Christian Nansen; Robert B. Meeley; Michael V. Kolomiets

Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro-economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling is required for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.


Molecular Plant-microbe Interactions | 2009

Inactivation of the Lipoxygenase ZmLOX3 Increases Susceptibility of Maize to Aspergillus spp.

Xiquan Gao; Marion Brodhagen; Tom Isakeit; Sigal Horowitz Brown; Cornelia Göbel; Javier Betrán; Ivo Feussner; Nancy P. Keller; Michael V. Kolomiets

Plant and fungal lipoxygenases (LOX) catalyze the oxidation of polyunsaturated fatty acids, creating fatty-acid hydroperoxides (oxylipins). Fungal oxylipins are required for normal fungal development and secondary metabolism, and plant host-derived oxylipins interfere with these processes in fungi, presumably by signal mimicry. The maize LOX gene ZmLOX3 has been implicated previously in seed-Aspergillus interactions, so we tested the interactions of a mutant maize line (lox3-4, in which ZmLOX3 is disrupted) with the mycotoxigenic seed-infecting fungi Aspergillus flavus and Aspergillus nidulans. The lox3-4 mutant was more susceptible than wild-type maize to both Aspergillus species. All strains of A. flavus and A. nidulans produced more conidia and aflatoxin (or the precursor sterigmatocystin) on lox3-4 kernels than on wild-type kernels, in vitro and under field conditions. Although oxylipins did not differ detectably between A. flavus-infected kernels of the lox3-4 and wild-type (WT) maize, oxylipin precursors (free fatty acids) and a downstream metabolite (jasmonic acid) accumulated to greater levels in lox3-4 than in WT kernels. The increased resistance of the lox3-4 mutant to other fungal pathogens (Fusarium, Colletotrichum, Cochliobolus, and Exserohilum spp.) is in sharp contrast to results described herein for Aspergillus spp., suggesting that outcomes of LOX-governed host-pathogen interactions are pathogen-specific.


The Plant Cell | 2012

Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense

Yuanxin Yan; Shawn A. Christensen; Tom Isakeit; Jurgen Engelberth; Robert B. Meeley; Allison Hayward; R. J. Neil Emery; Michael V. Kolomiets

Maize OPR7 and OPR8 are redundant paralogs responsible for JA biosynthesis. Double mutation in both genes revealed diverse roles of JA in developmental and defense processes, including regulation of sex determination and female organ outgrowth, anthocyanin pigmentation, leaf senescence, and immunity against insects and pathogens. Here, multiple functions of jasmonic acid (JA) in maize (Zea mays) are revealed by comprehensive analyses of JA-deficient mutants of the two oxo-phytodienoate reductase genes, OPR7 and OPR8. Single mutants produce wild-type levels of JA in most tissues, but the double mutant opr7 opr8 has dramatically reduced JA in all organs tested. opr7 opr8 displayed strong developmental defects, including formation of a feminized tassel, initiation of female reproductive buds at each node, and extreme elongation of ear shanks; these defects were rescued by exogenous JA. These data provide evidence that JA is required for male sex determination and suppression of female reproductive organ biogenesis. Moreover, opr7 opr8 exhibited delayed leaf senescence accompanied by reduced ethylene and abscisic acid levels and lack of anthocyanin pigmentation of brace roots. Remarkably, opr7 opr8 is nonviable in nonsterile soil and under field conditions due to extreme susceptibility to a root-rotting oomycete (Pythium spp), demonstrating that these genes are necessary for maize survival in nature. Supporting the importance of JA in insect defense, opr7 opr8 is susceptible to beet armyworm. Overall, this study provides strong genetic evidence for the global roles of JA in maize development and immunity to pathogens and insects.


Toxin Reviews | 2009

Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi

Xiquan Gao; Michael V. Kolomiets

A major problem in grain production is the contamination of seed with mycotoxins produced by Aspergillus spp. and Fusarium spp. Among these fungi, Aspergilli commonly associate with oil-rich crops such as corn, peanuts, cotton, and various tree nuts, suggesting an important role for host lipids in the ability of pathogens to produce mycotoxins. Recent genetic and pharmacological studies demonstrated that plant-derived lipids, especially their oxidized products called oxylipins, govern the outcome of the host-fungal pathogen interactions. The emerging picture suggests that host lipids and oxylipins act as signals to modulate fungal developmental processes including sporogenesis and biosynthesis of mycotoxins by mimicking the regulatory action of endogenous fungal oxidized lipids. In this review we discuss recent findings that implicate host seed lipids, and their oxylipin derivatives including hydroperoxides, jasmonates, and C6-volatile compounds in regulating fungal development and mycotoxin biosynthesis.


Planta | 2010

Comparative molecular and biochemical characterization of segmentally duplicated 9-lipoxygenase genes ZmLOX4 and ZmLOX5 of maize.

Yong-Soon Park; Susan Kunze; Xinzhi Ni; Ivo Feussner; Michael V. Kolomiets

Lipoxygenases (LOXs) catalyze hydroperoxidation of polyunsaturated fatty acids (PUFAs) to form structurally and functionally diverse oxylipins. Precise physiological and biochemical functions of individual members of plant multigene LOX families are largely unknown. Herein we report on molecular and biochemical characterization of two closely related maize 9-lipoxygenase paralogs, ZmLOX4 and ZmLOX5. Recombinant ZmLOX5 protein displayed clear 9-LOX regio-specificity at both neutral and slightly alkaline pH. The genes were differentially expressed in various maize organs and tissues as well as in response to diverse stress treatments. The transcripts of ZmLOX4 accumulated predominantly in roots and shoot apical meristem, whereas ZmLOX5 was expressed in most tested aboveground organs. Both genes were not expressed in untreated leaves, but displayed differential induction by defense-related hormones. While ZmLOX4 was only induced by jasmonic acid (JA), the transcripts of ZmLOX5 were increased in response to JA and salicylic acid treatments. ZmLOX5 was transiently induced both locally and systemically by wounding, which was accompanied by increased levels of 9-oxylipins, and fall armyworm herbivory, suggesting a putative role for this gene in defense against insects. Surprisingly, despite of moderate JA- and wound-inducibility of ZmLOX4, the gene was not responsive to insect herbivory. These results suggest that the two genes may have distinct roles in maize adaptation to diverse biotic and abiotic stresses. Both paralogs were similarly induced by virulent and avirulent strains of the fungal leaf pathogen Cochliobolus carbonum. Putative physiological roles for the two genes are discussed in the context of their biochemical and molecular properties.


Molecular Plant Pathology | 2014

Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection

Rachel Ozalvo; Javier Cabrera; Carolina Escobar; Shawn A. Christensen; Eli J. Borrego; Michael V. Kolomiets; Carmen Castresana; Ionit Iberkleid; Sigal Brown Horowitz

The responses of two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, to infection by the sedentary nematodes root-knot nematode (Meloidogyne javanica) and cyst nematode (Heterodera schachtii) were analysed in transgenic Arabidopsis seedlings. The tissue localization of LOX3 and LOX4 gene expression using β-glucuronidase (GUS) reporter gene constructs showed local induction of LOX3 expression when second-stage juveniles reached the vascular bundle and during the early stages of plant-nematode interaction through gall and syncytia formation. Thin sections of nematode-infested knots indicated LOX3 expression in mature giant cells, and high expression in neighbouring cells and those surrounding the female body. LOX4 promoter was also activated by nematode infection, although the GUS signal weakened as infection and disease progressed. Homozygous insertion mutants lacking LOX3 were less susceptible than wild-type plants to root-knot nematode infection, as reflected by a decrease in female counts. Conversely, deficiency in LOX4 function led to a marked increase in females and egg mass number and in the female to male ratio of M. javanica and H. schachtii, respectively. The susceptibility of lox4 mutants was accompanied by increased expression of allene oxide synthase, allene oxide cyclase and ethylene-responsive transcription factor 4, and the accumulation of jasmonic acid, measured in the roots of lox4 mutants. This response was not found in lox3 mutants. Taken together, our results reveal that LOX4 and LOX3 interfere differentially with distinct metabolic and signalling pathways, and that LOX4 plays a major role in controlling plant defence against nematode infection.

Collaboration


Dive into the Michael V. Kolomiets's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shawn A. Christensen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Ivo Feussner

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Kunze

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge