Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eliana Marisa Ramos is active.

Publication


Featured researches published by Eliana Marisa Ramos.


Neurology | 2012

CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Michael R. Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S. Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


Cell | 2015

Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease

Jong-Min Lee; Vanessa C. Wheeler; Michael J. Chao; Jean Paul Vonsattel; Ricardo Mouro Pinto; Diane Lucente; Kawther Abu-Elneel; Eliana Marisa Ramos; Jayalakshmi S. Mysore; Tammy Gillis; Marcy E. MacDonald; James F. Gusella; Denise Harold; Timothy Stone; Valentina Escott-Price; Jun Han; Alexey Vedernikov; Peter Holmans; Lesley Jones; Seung Kwak; Mithra Mahmoudi; Michael Orth; G. Bernhard Landwehrmeyer; Jane S. Paulsen; E. Ray Dorsey; Ira Shoulson; Richard H. Myers

As a Mendelian neurodegenerative disorder, the genetic risk of Huntingtons disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.


Archive | 2012

COHORT study oft the HSG. CAG repeat expansion in Huntington disease determines age at onset in al fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie-Helene Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


Nature Neuroscience | 2016

Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice

Peter Langfelder; Jeffrey P. Cantle; Doxa Chatzopoulou; Nan Wang; Fuying Gao; Ismael Al-Ramahi; Xiao-Hong Lu; Eliana Marisa Ramos; Karla Elzein; Yining Zhao; Sandeep Deverasetty; Andreas Tebbe; Christoph Schaab; Daniel J. Lavery; David Howland; Seung Kwak; Juan Botas; Jeffrey S. Aaronson; Jim Rosinski; Giovanni Coppola; Steve Horvath; X. William Yang

To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntingtons disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length–dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo.


Nature Genetics | 2015

Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export

Andrea Legati; Donatella Giovannini; Gaël Nicolas; Uriel López-Sánchez; Beatriz Quintáns; João Ricardo Mendes de Oliveira; Renee Sears; Eliana Marisa Ramos; Elizabeth Spiteri; María Jesús Sobrido; Angel Carracedo; Cristina Castro-Fernández; Stéphanie Cubizolle; Brent L. Fogel; Cyril Goizet; Joanna C. Jen; Suppachok Kirdlarp; Anthony E. Lang; Zosia Miedzybrodzka; Witoon Mitarnun; Martin Paucar; Henry L. Paulson; Jérémie Pariente; Anne Claire Richard; Naomi Salins; Sheila A. Simpson; Pasquale Striano; Per Svenningsson; François Tison; Vivek K. Unni

Primary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions and has thus far been associated with SLC20A2, PDGFB or PDGFRB mutations. We identified in multiple families with PFBC mutations in XPR1, a gene encoding a retroviral receptor with phosphate export function. These mutations alter phosphate export, implicating XPR1 and phosphate homeostasis in PFBC.


Clinical Genetics | 2010

Large normal and reduced penetrance alleles in Huntington disease: instability in families and frequency at the laboratory, at the clinic and in the population

Jorge Sequeiros; Eliana Marisa Ramos; J Cerqueira; Mc Costa; Alda Sousa; Jorge Pinto-Basto; Isabel Alonso

Sequeiros J, Ramos EM, Cerqueira J, Costa MC, Sousa A, Pinto‐Basto J, Alonso I. Large normal and reduced penetrance alleles in Huntington disease: instability in families and frequency at the laboratory, at the clinic and in the population.


Human Mutation | 2015

Update and Mutational Analysis of SLC20A2: A Major Cause of Primary Familial Brain Calcification

R. R. Lemos; Eliana Marisa Ramos; Andrea Legati; Gaël Nicolas; Emma M. Jenkinson; John H. Livingston; Yanick J. Crow; Dominique Campion; Giovanni Coppola; João Ricardo Mendes de Oliveira

Primary familial brain calcification (PFBC) is a heterogeneous neuropsychiatric disorder, with affected individuals presenting a wide variety of motor and cognitive impairments, such as migraine, parkinsonism, psychosis, dementia, and mood swings. Calcifications are usually symmetrical, bilateral, and found predominantly in the basal ganglia, thalamus, and cerebellum. So far, variants in three genes have been linked to PFBC: SLC20A2, PDGFRB, and PDGFB. Variants in SLC20A2 are responsible for most cases identified so far and, therefore, the present review is a comprehensive worldwide summary of all reported variants to date. SLC20A2 encodes an inorganic phosphate transporter, PiT‐2, widely expressed in various tissues, including brain, and is part of a major family of solute carrier membrane transporters. Fifty variants reported in 55 unrelated patients so far have been identified in families of diverse ethnicities and only few are recurrent. Various types of variants were detected (missense, nonsense, frameshift) including full or partial SLC20A2 deletions. The recently reported SLC20A2 knockout mouse will enhance our understanding of disease mechanism and allow for screening of therapeutic compounds. In the present review, we also discuss the implications of these recent exciting findings and consider the possibility of treatments based on manipulation of inorganic phosphate homeostasis.


PLOS ONE | 2009

Ancestral origin of the ATTCT repeat expansion in spinocerebellar ataxia type 10 (SCA10)

Teresa Almeida; Isabel Alonso; Sandra Martins; Eliana Marisa Ramos; Luísa Azevedo; Kinji Ohno; António Amorim; Maria Luiza Saraiva-Pereira; Laura Bannach Jardim; Tohru Matsuura; Jorge Sequeiros; Isabel Silveira

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disease characterized by cerebellar ataxia and seizures. The disease is caused by a large ATTCT repeat expansion in the ATXN10 gene. The first families reported with SCA10 were of Mexican origin, but the disease was soon after described in Brazilian families of mixed Portuguese and Amerindian ancestry. The origin of the SCA10 expansion and a possible founder effect that would account for its geographical distribution have been the source of speculation over the last years. To unravel the mutational origin and spread of the SCA10 expansion, we performed an extensive haplotype study, using closely linked STR markers and intragenic SNPs, in families from Brazil and Mexico. Our results showed (1) a shared disease haplotype for all Brazilian and one of the Mexican families, and (2) closely-related haplotypes for the additional SCA10 Mexican families; (3) little or null genetic distance in small normal alleles of different repeat sizes, from the same SNP lineage, indicating that they are being originated by a single step mechanism; and (4) a shared haplotype for pure and interrupted expanded alleles, pointing to a gene conversion model for its generation. In conclusion, we show evidence for an ancestral common origin for SCA10 in Latin America, which might have arisen in an ancestral Amerindian population and later have been spread into the mixed populations of Mexico and Brazil.


Stem cell reports | 2015

Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington’s Disease Neural Stem Cells

Karen L. Ring; Mahru C. An; Ningzhe Zhang; Robert O’Brien; Eliana Marisa Ramos; Fuying Gao; Robert Atwood; Barbara J. Bailus; Simon Melov; Sean D. Mooney; Giovanni Coppola

Summary We utilized induced pluripotent stem cells (iPSCs) derived from Huntington’s disease (HD) patients as a human model of HD and determined that the disease phenotypes only manifest in the differentiated neural stem cell (NSC) stage, not in iPSCs. To understand the molecular basis for the CAG repeat expansion-dependent disease phenotypes in NSCs, we performed transcriptomic analysis of HD iPSCs and HD NSCs compared to isogenic controls. Differential gene expression and pathway analysis pointed to transforming growth factor β (TGF-β) and netrin-1 as the top dysregulated pathways. Using data-driven gene coexpression network analysis, we identified seven distinct coexpression modules and focused on two that were correlated with changes in gene expression due to the CAG expansion. Our HD NSC model revealed the dysregulation of genes involved in neuronal development and the formation of the dorsal striatum. The striatal and neuronal networks disrupted could be modulated to correct HD phenotypes and provide therapeutic targets.


Brain | 2017

A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction

Ana Lopez; Suzee E. Lee; Kevin Wojta; Eliana Marisa Ramos; Eric Klein; Jason A. Chen; Adam L. Boxer; Maria Luisa Gorno-Tempini; Daniel H. Geschwind; Lars Schlotawa; Nikolay V. Ogryzko; Eileen H. Bigio; Emily Rogalski; Sandra Weintraub; M.-Marsel Mesulam; Angeleen Fleming; Giovanni Coppola; Bruce L. Miller; David C. Rubinsztein

Mutations in MAPT cause a variety of neurodegenerative disorders. Lopez et al. confirm that A152T-variant tau is associated with increased risk for frontotemporal dementia and progressive supranuclear palsy syndrome. Upregulation of autophagy increases tau clearance and ameliorates pathology in zebrafish expressing A152T-tau, suggesting potential for the treatment of tauopathies.

Collaboration


Dive into the Eliana Marisa Ramos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Ross

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha Nance

Hennepin County Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge