Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diane Lucente is active.

Publication


Featured researches published by Diane Lucente.


Neurology | 2012

CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Michael R. Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S. Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


Cell | 2015

Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease

Jong-Min Lee; Vanessa C. Wheeler; Michael J. Chao; Jean Paul Vonsattel; Ricardo Mouro Pinto; Diane Lucente; Kawther Abu-Elneel; Eliana Marisa Ramos; Jayalakshmi S. Mysore; Tammy Gillis; Marcy E. MacDonald; James F. Gusella; Denise Harold; Timothy Stone; Valentina Escott-Price; Jun Han; Alexey Vedernikov; Peter Holmans; Lesley Jones; Seung Kwak; Mithra Mahmoudi; Michael Orth; G. Bernhard Landwehrmeyer; Jane S. Paulsen; E. Ray Dorsey; Ira Shoulson; Richard H. Myers

As a Mendelian neurodegenerative disorder, the genetic risk of Huntingtons disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.


Archive | 2012

COHORT study oft the HSG. CAG repeat expansion in Huntington disease determines age at onset in al fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie-Helene Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


Proceedings of the National Academy of Sciences of the United States of America | 2014

CHD8 Regulates Neurodevelopmental Pathways Associated with Autism Spectrum Disorder in Neural Progenitors

Aarathi Sugathan; Marta Biagioli; Christelle Golzio; Serkan Erdin; Ian Blumenthal; Poornima Manavalan; Ashok Ragavendran; Harrison Brand; Diane Lucente; Judith H. Miles; Steven D. Sheridan; Alexei Stortchevoi; Manolis Kellis; Stephen J. Haggarty; Nicholas Katsanis; James F. Gusella; Michael E. Talkowski

Significance Truncating mutation of chromodomain helicase DNA-binding protein 8 (CHD8) represents one of the strongest known risk factors for autism spectrum disorder (ASD). We mimicked the effects of such heterozygous loss-of-function mutations in neural progenitor cells and integrated RNA sequencing with genome-wide delineation of CHD8 binding. Our results reveal that the molecular mechanism by which CHD8 alters neurodevelopmental pathways may involve both direct and indirect effects, the latter involving down-regulation following CHD8 suppression. We also find that chd8 suppression in zebrafish results in macrocephaly, consistent with observations in patients harboring loss-of-function mutations. We show that reduced expression of CHD8 impacts a variety of other functionally distinct ASD-associated genes, suggesting that the diverse functions of ASD risk factors may constitute multiple means of triggering a smaller number of final common pathways. Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10−8) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10−10). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.


American Journal of Human Genetics | 1999

Precise genetic mapping and haplotype analysis of the familial dysautonomia gene on human chromosome 9q31.

Anat Blumenfeld; Susan A. Slaugenhaupt; Christopher B. Liebert; Violeta Temper; Channa Maayan; Sandra Gill; Diane Lucente; Maria Idelson; Kathy MacCormack; Mary Anne Monahan; James Mull; Maire Leyne; Marc L. Mendillo; Taryn A. Schiripo; Esther Mishori; Xandra O. Breakefield; Felicia B. Axelrod; James F. Gusella

Familial dysautonomia (FD) is an autosomal recessive disorder characterized by developmental arrest in the sensory and autonomic nervous systems and by Ashkenazi Jewish ancestry. We previously had mapped the defective gene (DYS) to an 11-cM segment of chromosome 9q31-33, flanked by D9S53 and D9S105. By using 11 new polymorphic loci, we now have narrowed the location of DYS to <0.5 cM between the markers 43B1GAGT and 157A3. Two markers in this interval, 164D1 and D9S1677, show no recombination with the disease. Haplotype analysis confirmed this candidate region and revealed a major haplotype shared by 435 of 441 FD chromosomes, indicating a striking founder effect. Three other haplotypes, found on the remaining 6 FD chromosomes, might represent independent mutations. The frequency of the major FD haplotype in the Ashkenazim (5 in 324 control chromosomes) was consistent with the estimated DYS carrier frequency of 1 in 32, and none of the four haplotypes associated with FD was observed on 492 non-FD chromosomes from obligatory carriers. It is now possible to provide accurate genetic testing both for families with FD and for carriers, on the basis of close flanking markers and the capacity to identify >98% of FD chromosomes by their haplotype.


Human Molecular Genetics | 2014

Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway

Xenia Lojewski; John F. Staropoli; Sunita Biswas-Legrand; Alexandra M. Simas; Larissa Haliw; Martin K. Selig; Scott H. Coppel; Kendrick A. Goss; Anton Petcherski; Uma Chandrachud; Steven D. Sheridan; Diane Lucente; Katherine B. Sims; James F. Gusella; Dolan Sondhi; Ronald G. Crystal; Peter Reinhardt; Jared Sterneckert; Hans R. Schöler; Stephen J. Haggarty; Alexander Storch; Andreas Hermann; Susan L. Cotman

Neuronal ceroid lipofuscinosis (NCL) comprises ∼13 genetically distinct lysosomal disorders primarily affecting the central nervous system. Here we report successful reprograming of patient fibroblasts into induced pluripotent stem cells (iPSCs) for the two most common NCL subtypes: classic late-infantile NCL, caused by TPP1(CLN2) mutation, and juvenile NCL, caused by CLN3 mutation. CLN2/TPP1- and CLN3-iPSCs displayed overlapping but distinct biochemical and morphological abnormalities within the endosomal-lysosomal system. In neuronal derivatives, further abnormalities were observed in mitochondria, Golgi and endoplasmic reticulum. While lysosomal storage was undetectable in iPSCs, progressive disease subtype-specific storage material was evident upon neural differentiation and was rescued by reintroducing the non-mutated NCL proteins. In proof-of-concept studies, we further documented differential effects of potential small molecule TPP1 activity inducers. Fenofibrate and gemfibrozil, previously reported to induce TPP1 activity in control cells, failed to increase TPP1 activity in patient iPSC-derived neural progenitor cells. Conversely, nonsense suppression by PTC124 resulted in both an increase of TPP1 activity and attenuation of neuropathology in patient iPSC-derived neural progenitor cells. This study therefore documents the high value of this powerful new set of tools for improved drug screening and for investigating early mechanisms driving NCL pathogenesis.


Annals of Neurology | 2017

Pathological correlations of [F‐18]‐AV‐1451 imaging in non‐alzheimer tauopathies

Marta Marquié; Marc D. Normandin; Avery C. Meltzer; Michael Siao Tick Chong; Nicolas V. Andrea; Alejandro Antón‐Fernández; William E. Klunk; Chester A. Mathis; Milos D. Ikonomovic; Manik L. Debnath; Elizabeth A. Bien; Charles R. Vanderburg; Isabel Costantino; Sara Makaretz; Sarah L. DeVos; Derek Oakley; Stephen N. Gomperts; John H. Growdon; Kimiko Domoto-Reilly; Diane Lucente; Bradford C. Dickerson; Matthew P. Frosch; Bradley T. Hyman; Keith Johnson; Teresa Gomez-Isla

Recent studies have shown that positron emission tomography (PET) tracer AV‐1451 exhibits high binding affinity for paired helical filament (PHF)‐tau pathology in Alzheimers brains. However, the ability of this ligand to bind to tau lesions in other tauopathies remains controversial. Our goal was to examine the correlation of in vivo and postmortem AV‐1451 binding patterns in three autopsy‐confirmed non‐Alzheimer tauopathy cases.


American Journal of Human Genetics | 2016

The HTT CAG-Expansion Mutation Determines Age at Death but Not Disease Duration in Huntington Disease

Jae Whan Keum; Aram Shin; Tammy Gillis; Jayalakshmi S. Mysore; Kawther Abu Elneel; Diane Lucente; Tiffany C. Hadzi; Peter Holmans; Lesley Jones; Michael Orth; Seung Kwak; Marcy E. MacDonald; James F. Gusella; Jong-Min Lee

Huntington disease (HD) is caused by an expanded HTT CAG repeat that leads in a length-dependent, completely dominant manner to onset of a characteristic movement disorder. HD also displays early mortality, so we tested whether the expanded CAG repeat exerts a dominant influence on age at death and on the duration of clinical disease. We found that, as with clinical onset, HD age at death is determined by expanded CAG-repeat length and has no contribution from the normal CAG allele. Surprisingly, disease duration is independent of the mutations length. It is also unaffected by a strong genetic modifier of HD motor onset. These findings suggest two parsimonious alternatives. (1) HD pathogenesis is driven by mutant huntingtin, but before or near motor onset, sufficient CAG-driven damage occurs to permit CAG-independent processes and then lead to eventual death. In this scenario, some pathological changes and their clinical correlates could still worsen in a CAG-driven manner after disease onset, but these CAG-related progressive changes do not themselves determine duration. Alternatively, (2) HD pathogenesis is driven by mutant huntingtin acting in a CAG-dependent manner with different time courses in multiple cell types, and the cellular targets that lead to motor onset and death are different and independent. In this scenario, processes driven by HTT CAG length lead directly to death but not via the striatal pathology associated with motor manifestations. Each scenario has important ramifications for the design and testing of potential therapeutics, especially those aimed at preventing or delaying characteristic motor manifestations.


Nature Genetics | 2017

SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome

Natalie D. Shaw; Harrison Brand; Zachary A. Kupchinsky; Hemant Bengani; Lacey Plummer; Takako I. Jones; Serkan Erdin; Kathleen A. Williamson; Joe Rainger; Alexei Stortchevoi; Kaitlin E. Samocha; Benjamin Currall; Donncha S. Dunican; Ryan L. Collins; Jason R. Willer; Angela Lek; Monkol Lek; Malik Nassan; Shahrin Pereira; Tammy Kammin; Diane Lucente; Alexandra Silva; Catarina M. Seabra; Colby Chiang; Yu An; Morad Ansari; Jacqueline K. Rainger; Shelagh Joss; Jill Clayton Smith; Margaret F. Lippincott

Arhinia, or absence of the nose, is a rare malformation of unknown etiology that is often accompanied by ocular and reproductive defects. Sequencing of 40 people with arhinia revealed that 84% of probands harbor a missense mutation localized to a constrained region of SMCHD1 encompassing the ATPase domain. SMCHD1 mutations cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) via a trans-acting loss-of-function epigenetic mechanism. We discovered shared mutations and comparable DNA hypomethylation patterning between these distinct disorders. CRISPR/Cas9-mediated alteration of smchd1 in zebrafish yielded arhinia-relevant phenotypes. Transcriptome and protein analyses in arhinia probands and controls showed no differences in SMCHD1 mRNA or protein abundance but revealed regulatory changes in genes and pathways associated with craniofacial patterning. Mutations in SMCHD1 thus contribute to distinct phenotypic spectra, from craniofacial malformation and reproductive disorders to muscular dystrophy, which we speculate to be consistent with oligogenic mechanisms resulting in pleiotropic outcomes.


The Journal of Neuroscience | 2017

Inhibition of p25/Cdk5 Attenuates Tauopathy in Mouse and iPSC Models of Frontotemporal Dementia

Jinsoo Seo; Oleg Kritskiy; L. Ashley Watson; Scarlett J. Barker; Dilip Dey; Waseem K. Raja; Yuan-Ta Lin; Tak Ko; Sukhee Cho; Jay Penney; M. Catarina Silva; Steven D. Sheridan; Diane Lucente; James F. Gusella; Bradford C. Dickerson; Stephen J. Haggarty; Li-Huei Tsai

Increased p25, a proteolytic fragment of the regulatory subunit p35, is known to induce aberrant activity of cyclin-dependent kinase 5 (Cdk5), which is associated with neurodegenerative disorders, including Alzheimers disease. Previously, we showed that replacing endogenous p35 with the noncleavable mutant p35 (Δp35) attenuated amyloidosis and improved cognitive function in a familial Alzheimers disease mouse model. Here, to address the role of p25/Cdk5 in tauopathy, we generated double-transgenic mice by crossing mice overexpressing mutant human tau (P301S) with Δp35KI mice. We observed significant reduction of phosphorylated tau and its seeding activity in the brain of double transgenic mice compared with the P301S mice. Furthermore, synaptic loss and impaired LTP at hippocampal CA3 region of P301S mice were attenuated by blocking p25 generation. To further validate the role of p25/Cdk5 in tauopathy, we used frontotemporal dementia patient-derived induced pluripotent stem cells (iPSCs) carrying the Tau P301L mutation and generated P301L:Δp35KI isogenic iPSC lines using CRISPR/Cas9 genome editing. We created cerebral organoids from the isogenic iPSCs and found that blockade of p25 generation reduced levels of phosphorylated tau and increased expression of synaptophysin. Together, these data demonstrate a crucial role for p25/Cdk5 in mediating tau-associated pathology and suggest that inhibition of this kinase can remedy neurodegenerative processes in the presence of pathogenic tau mutation. SIGNIFICANCE STATEMENT Accumulation of p25 results in aberrant Cdk5 activation and induction of numerous pathological phenotypes, such as neuroinflammation, synaptic loss, Aβ accumulation, and tau hyperphosphorylation. However, it was not clear whether p25/Cdk5 activity is necessary for the progression of these pathological changes. We recently developed the Δp35KI transgenic mouse that is deficient in p25 generation and Cdk5 hyperactivation. In this study, we used this mouse model to elucidate the role of p25/Cdk5 in FTD mutant tau-mediated pathology. We also used a frontotemporal dementia patient-derived induced pluripotent stem cell carrying the Tau P301L mutation and generated isogenic lines in which p35 is replaced with noncleavable mutant Δp35. Our data suggest that p25/Cdk5 plays an important role in tauopathy in both mouse and human model systems.

Collaboration


Dive into the Diane Lucente's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Ross

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha Nance

Hennepin County Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge