Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eliane A. Lucassen is active.

Publication


Featured researches published by Eliane A. Lucassen.


Annals of the New York Academy of Sciences | 2012

Interacting epidemics? Sleep curtailment, insulin resistance, and obesity

Eliane A. Lucassen; Kristina I. Rother; Giovanni Cizza

In the last 50 years, the average self‐reported sleep duration in the United States has decreased by 1.5–2 hours in parallel with an increasing prevalence of obesity and diabetes. Epidemiological studies and meta‐analyses report a strong relationship between short or disturbed sleep, obesity, and abnormalities in glucose metabolism. This relationship is likely to be bidirectional and causal in nature, but many aspects remain to be elucidated. Sleep and the internal circadian clock influence a host of endocrine parameters. Sleep curtailment in humans alters multiple metabolic pathways, leading to more insulin resistance, possibly decreased energy expenditure, increased appetite, and immunological changes. On the other hand, psychological, endocrine, and anatomical abnormalities in individuals with obesity and/or diabetes can interfere with sleep duration and quality, thus creating a vicious cycle. In this review, we address mechanisms linking sleep with metabolism, highlight the need for studies conducted in real‐life settings, and explore therapeutic interventions to improve sleep, with a potential beneficial effect on obesity and its comorbidities.


Diabetes | 2013

The Suprachiasmatic Nucleus Controls Circadian Energy Metabolism and Hepatic Insulin Sensitivity

Claudia P. Coomans; Sjoerd A. A. van den Berg; Eliane A. Lucassen; Thijs Houben; Amanda Pronk; Rianne van der Spek; Andries Kalsbeek; Nienke R. Biermasz; Ko Willems van Dijk; Johannes A. Romijn; Johanna H. Meijer

Disturbances in the circadian system are associated with the development of type 2 diabetes mellitus. Here, we studied the direct contribution of the suprachiasmatic nucleus (SCN), the central pacemaker in the circadian system, in the development of insulin resistance. Exclusive bilateral SCN lesions in male C57Bl/6J mice, as verified by immunochemistry, showed a small but significant increase in body weight (+17%), which was accounted for by an increase in fat mass. In contrast, mice with collateral damage to the ventromedial hypothalamus and paraventricular nucleus showed severe obesity and insulin resistance. Mice with exclusive SCN ablation revealed a loss of circadian rhythm in activity, oxygen consumption, and food intake. Hyperinsulinemic–euglycemic clamp analysis 8 weeks after lesioning showed that the glucose infusion rate was significantly lower in SCN lesioned mice compared with sham-operated mice (−63%). Although insulin potently inhibited endogenous glucose production (−84%), this was greatly reduced in SCN lesioned mice (−7%), indicating severe hepatic insulin resistance. Our data show that SCN malfunctioning plays an important role in the disturbance of energy balance and suggest that an absence of central clock activity, in a genetically intact animal, may lead to the development of insulin resistance.


PLOS ONE | 2013

Evening Chronotype Is Associated with Changes in Eating Behavior, More Sleep Apnea, and Increased Stress Hormones in Short Sleeping Obese Individuals

Eliane A. Lucassen; Xiongce Zhao; Kristina I. Rother; Megan Mattingly; Amber B. Courville; Lilian de Jonge; Gyorgy Csako; Giovanni Cizza

Background Short sleep duration and decreased sleep quality are emerging risk factors for obesity and its associated morbidities. Chronotype, an attribute that reflects individual preferences in the timing of sleep and other behaviors, is a continuum from morningness to eveningness. The importance of chronotype in relation to obesity is mostly unknown. Evening types tend to have unhealthy eating habits and suffer from psychological problems more frequently than Morning types, thus we hypothesized that eveningness may affect health parameters in a cohort of obese individuals reporting sleeping less than 6.5 hours per night. Methodology and Principal Findings Baseline data from obese (BMI: 38.5±6.4 kg/m2) and short sleeping (5.8±0.8 h/night by actigraphy) participants (n = 119) of the Sleep Extension Study were analyzed (www.ClinicalTrials.gov, identifier NCT00261898). Assessments included the Horne and Ostberg Morningness-Eveningness questionnaire, a three-day dietary intake diary, a 14-day sleep diary, 14 days of actigraphy, and measurements of sleep apnea. Twenty-four hour urinary free cortisol, 24 h urinary norepinephrine and epinephrine levels, morning plasma ACTH and serum cortisol, fasting glucose and insulin, and lipid parameters were determined. Eveningness was associated with eating later in the day on both working and non-working days. Progression towards eveningness was associated with an increase in BMI, resting heart rate, food portion size, and a decrease in the number of eating occasions and HDL-cholesterol. Evening types had overtly higher 24 h urinary epinephrine and morning plasma ACTH levels, and higher morning resting heart rate than Morning types. In addition, Evening types more often had sleep apnea, independent of BMI or neck circumference. Conclusions Eveningness was associated with eating later and a tendency towards fewer and larger meals and lower HDL-cholesterol levels. In addition, Evening types had more sleep apnea and higher stress hormones. Thus, eveningness in obese, chronically sleep-deprived individuals compounds the cardiovascular risk associated with obesity.


PLOS ONE | 2012

Amplitude of the SCN Clock Enhanced by the Behavioral Activity Rhythm

Floor van Oosterhout; Eliane A. Lucassen; Thijs Houben; Henk Tjebbe vanderLeest; Michael C. Antle; Johanna H. Meijer

Circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), a small structure at the base of the hypothalamus. While light effects on the SCN are well established, little is known of behavioral effects. This study elucidates direct modulating action of behavioral activity on the SCN by use of in vivo electrophysiology recordings, assessments of general locomotor behavior, and video-tracking of mice. The results show suppression of SCN neuronal activity by spontaneous behavior, the magnitude being dependent on the intensity, duration and type of behavioral activity. The suppression was moderate (32% of circadian amplitude) for low-intensity behavior and considerable (59%) for locomotor activity. Mild manipulation of the animals had reversed effects on the SCN indicating that different mechanisms are involved in the regulatory effect of spontaneous versus induced activity. The results indicate that exercise at the proper time of the cycle can boost the amplitude of the rhythm of the SCN clock itself. This has potentially beneficial effects for other rhythmic functions that are under the control of the SCN.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity

Sander Kooijman; Rosa van den Berg; Ashna Ramkisoensing; Mariëtte R. Boon; Eline N. Kuipers; Marieke Loef; Tom C. M. Zonneveld; Eliane A. Lucassen; Hetty C. M. Sips; Iliana A. Chatzispyrou; Riekelt H. Houtkooper; Johanna H. Meijer; Claudia P. Coomans; Nienke R. Biermasz; Patrick C. N. Rensen

Significance Increased light exposure has been associated with obesity in both humans and mice. In this article, we elucidate a mechanistic basis of this association by performing studies in mice. We report that prolonging daily light exposure increases adiposity by decreasing energy expenditure rather than increasing food intake or locomotor activity. This was caused by a light-exposure period-dependent attenuation of the noradrenergic activation of brown adipose tissue that has recently been shown to contribute substantially to energy expenditure by converting fatty acids and glucose into heat. Therefore, we conclude that impaired brown adipose tissue activity may mediate the relationship between increased light exposure and adiposity. Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.


Current obesity reports | 2012

The Hypothalamic-Pituitary-Adrenal Axis, Obesity, and Chronic Stress Exposure: Sleep and the HPA Axis in Obesity

Eliane A. Lucassen; Giovanni Cizza

Obesity, exposure to stress and inadequate sleep are prevalent phenomena in modern society. In this review we focus on their relationships and critically evaluate causality. In obese individuals, one of the main stress systems, the hypothalamic-pituitary-adrenal axis, is altered, and concentrations of cortisol are elevated in adipose tissue due to elevated local activity of 11β-hydroxysteroid dehydrogenase (HSD) type 1. Short sleep and decreased sleep quality are also associated with obesity. In addition, experimental sleep curtailment induces HPA-axis alterations which, in turn, may negatively affect sleep. These findings implicate that obesity, stress and sleep loss are all related in a vicious circle. Finally, we discuss new strategies to combat obesity through modulating cortisol levels in adipose tissue by 11β-HSD1 inhibitors or by improving sleep duration.


Metabolic Syndrome and Related Disorders | 2014

Neck Circumference Is a Predictor of Metabolic Syndrome and Obstructive Sleep Apnea in Short-Sleeping Obese Men and Women

Giovanni Cizza; Lilian de Jonge; Paolo Piaggi; Megan Mattingly; Xiongce Zhao; Eliane A. Lucassen; Kristina I. Rother; Anne E. Sumner; Gyorgy Csako

BACKGROUND The constellation of metabolic syndrome, although controversial with regard to its clinical usefulness, is epidemiologically related to increased diabetes risk and cardiovascular mortality. Our goal was to investigate the associations among neck circumference (NC), obstructive sleep apnea syndromes (OSAS), and metabolic syndrome in obese men and women sleeping less than 6.5 hr per night. METHODS This was a cross-sectional study of obese men and premenopausal obese women sleeping less than 6.5 hr per night. We enrolled 120 individuals (92 women), age 40.5±6.9 years and body mass index (BMI) 38.6±6.5 kg/m(2). Metabolic syndrome severity was assessed by a score and OSAS was defined as a respiratory disturbance index (RDI) ≥5. Metabolic end endocrine parameters were measured, and sleep duration was determined by actigraphy and validated questionnaires. RESULTS Metabolic syndrome was found in 41% and OSAS in 58% (28% had both). Subjects with metabolic syndrome were 3 years older and more often Caucasian; they had higher RDI scores, larger NC, more visceral fat, lower serum adiponectin, higher 24-hr urinary norepinephrine (NE) excretion, and lower growth hormone concentrations. A NC of ≥38 cm had a sensitivity of 54% and 58% and a specificity of 70% and 79% in predicting the presence of metabolic syndrome and OSAS, respectively. RDI, adiponectin, and NC accounted for approximately 30% of the variability in the metabolic syndrome score, as estimated by an age-, gender-, and race-corrected multivariate model (R(2)=0.376, P<0.001). CONCLUSION Greater NC is associated with OSAS and metabolic syndrome in short-sleeping obese men and premenopausal obese women. Addition of NC to the definition of metabolic syndrome should be considered and needs to be validated in future studies.


PLOS ONE | 2013

Obstructive Sleep Apnea Is a Predictor of Abnormal Glucose Metabolism in Chronically Sleep Deprived Obese Adults

Giovanni Cizza; Paolo Piaggi; Eliane A. Lucassen; Lilian de Jonge; Mary Walter; Megan Mattingly; Heather Kalish; Gyorgy Csako; Kristina I. Rother

Context Sleep abnormalities, including obstructive sleep apnea (OSA), have been associated with insulin resistance. Objective To determine the relationship between sleep, including OSA, and glucose parameters in a prospectively assembled cohort of chronically sleep-deprived obese subjects. Design Cross-sectional evaluation of a prospective cohort study. Setting Tertiary Referral Research Clinical Center. Main Outcome Measure(s) Sleep duration and quality assessed by actigraphy, sleep diaries and questionnaires, OSA determined by a portable device; glucose metabolism assessed by oral glucose tolerance test (oGTT), and HbA1c concentrations in 96 obese individuals reporting sleeping less than 6.5 h on a regular basis. Results Sixty % of subjects had an abnormal respiratory disturbance index (RDI≥5) and 44% of these subjects had abnormal oGTT results. Severity of OSA as assessed by RDI score was associated with fasting glucose (R = 0.325, p = 0.001) and fasting insulin levels (ρ = 0.217, p = 0.033). Subjects with moderate to severe OSA (RDI>15) had higher glucose concentrations at 120 min than those without OSA (RDI<5) (p = 0.017). Subjects with OSA also had significantly higher concentrations of plasma ACTH (p = 0.009). Several pro-inflammatory cytokines were higher in subjects with OSA (p<0.050). CRP levels were elevated in this sample, suggesting increased cardiovascular risk. Conclusions OSA is associated with impaired glucose metabolism in obese, sleep deprived individuals. Since sleep apnea is common and frequently undiagnosed, health care providers should be aware of its occurrence and associated risks. Trial Registration This study was conducted under the NIDDK protocol 06-DK-0036 and is listed in ClinicalTrials.gov NCT00261898


European Journal of Neuroscience | 2012

Role of vasoactive intestinal peptide in seasonal encoding by the suprachiasmatic nucleus clock

Eliane A. Lucassen; Hester C. van Diepen; Thijs Houben; Stephan Michel; Christopher S. Colwell; Johanna H. Meijer

The neuropeptide vasoactive intestinal peptide (VIP) is critical for the proper functioning of the neural circuit that generates circadian rhythms. Mice lacking VIP show profound deficits in the ability to generate many behavioral and physiological rhythms. To explore how the loss of VIP impacts on the intact circadian system, we carried out in vivo multiunit neural activity (MUA) recordings from the suprachiasmatic nucleus of freely moving VIP knockout (KO) mice. The MUA rhythms were largely unaltered in the VIP KO mice, with no significant differences being seen in the amplitude or phase of the rhythms in light–dark conditions. Robust differences between the genotypes were revealed when the mice were transferred from light–dark to constant darkness conditions. In addition, the ability of the VIP KO mice to encode changes in photoperiod was examined. Strikingly, the behavioral and physiological rhythms of VIP KO mice showed no adaptation to short or long photoperiods. The data indicate that the intact circadian system can compensate for some of the consequences of the loss of VIP, whereas this peptide is indispensable for endogenous encoding of seasonal information.


PLOS ONE | 2014

Sleep Extension Improves Neurocognitive Functions in Chronically Sleep-Deprived Obese Individuals

Eliane A. Lucassen; Paolo Piaggi; John Dsurney; Lilian de Jonge; Xiongce Zhao; Megan Mattingly; Angela Ramer; Janet Gershengorn; Gyorgy Csako; Giovanni Cizza

Background Sleep deprivation and obesity, are associated with neurocognitive impairments. Effects of sleep deprivation and obesity on cognition are unknown, and the cognitive long-term effects of improvement of sleep have not been prospectively assessed in short sleeping, obese individuals. Objective To characterize neurocognitive functions and assess its reversibility. Design Prospective cohort study. Setting Tertiary Referral Research Clinical Center. Patients A cohort of 121 short-sleeping (<6.5 h/night) obese (BMI 30–55 kg/m2) men and pre-menopausal women. Intervention Sleep extension (468±88 days) with life-style modifications. Measurements Neurocognitive functions, sleep quality and sleep duration. Results At baseline, 44% of the individuals had an impaired global deficit score (t-score 0–39). Impaired global deficit score was associated with worse subjective sleep quality (p = 0.02), and lower urinary dopamine levels (p = 0.001). Memory was impaired in 33%; attention in 35%; motor skills in 42%; and executive function in 51% of individuals. At the final evaluation (N = 74), subjective sleep quality improved by 24% (p<0.001), self-reported sleep duration increased by 11% by questionnaires (p<0.001) and by 4% by diaries (p = 0.04), and daytime sleepiness tended to improve (p = 0.10). Global cognitive function and attention improved by 7% and 10%, respectively (both p = 0.001), and memory and executive functions tended to improve (p = 0.07 and p = 0.06). Serum cortisol increased by 17% (p = 0.02). In a multivariate mixed model, subjective sleep quality and sleep efficiency, urinary free cortisol and dopamine and plasma total ghrelin accounted for 1/5 of the variability in global cognitive function. Limitations Drop-out rate. Conclusions Chronically sleep-deprived obese individuals exhibit substantial neurocognitive deficits that are partially reversible upon improvement of sleep in a non-pharmacological way. These findings have clinical implications for large segments of the US population. Trail registration www.ClinicalTrials.gov NCT00261898. NIDDK protocol 06-DK-0036

Collaboration


Dive into the Eliane A. Lucassen's collaboration.

Top Co-Authors

Avatar

Johanna H. Meijer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Giovanni Cizza

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Claudia P. Coomans

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thijs Houben

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gyorgy Csako

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kristina I. Rother

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lilian de Jonge

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Megan Mattingly

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nienke R. Biermasz

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Paolo Piaggi

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge