Eline Dekeyster
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eline Dekeyster.
Investigative Ophthalmology & Visual Science | 2013
Lies De Groef; Inge Van Hove; Eline Dekeyster; Ingeborg Stalmans; Lieve Moons
Glaucoma is one of the worlds most common blinding diseases, affecting more than 60 million people worldwide. Although the disease presents as a neurodegenerative disorder affecting retinal ganglion cell axons in the optic nerve and their somata in the retina, the elicitors of this optic neuropathy are often located outside the neuroretina. Disturbances in aqueous humor outflow, leading to ocular hypertension, are considered to be the major risk factor for the development of glaucoma. Although an amplitude of pharmacological and surgical measures is available to lower IOP in glaucoma patients, these are not always sufficient to halt the disease. Multiple surveys in glaucoma patients, as well as in vitro studies in anterior segment explant or cell cultures, reported changes in the expression and activity of several matrix metalloproteinases (MMPs) in the aqueous humor and trabecular meshwork, in response to elevated IOP. In this review, we describe MMPs as important modulators of aqueous humor outflow, functioning in a feedback mechanism that continuously remodels the trabecular meshwork extracellular matrix composition in order to maintain a stable outflow resistance and IOP. We review the evidence for the involvement of MMPs in glaucoma disease onset and investigate their potential as therapeutic targets for the development of future glaucoma therapies.
Investigative Ophthalmology & Visual Science | 2014
Lies De Groef; Inge Van Hove; Eline Dekeyster; Ingeborg Stalmans; Lieve Moons
Multiple studies in glaucoma patients and in animal models of spontaneous and experimentally-induced glaucoma, reported changes in the expression and activity of several matrix metalloproteinases (MMPs) in the retina, optic nerve, aqueous humor, and trabecular meshwork. These data have led to the hypothesis that MMPs might be involved in glaucoma onset and/or disease progression. However, reports are conflicting and research aiming at providing a clear definition of their causative role is lacking. In glaucoma, MMPs are thought to act at two different levels. In the trabecular meshwork, they fine-tune the aqueous humor outflow rate and intraocular pressure, in the neuroretina and optic nerve, however, their role during glaucoma disease progression is much less clear. This review provides a comprehensive overview of the research conducted on the expression and function of MMPs in the retina and optic nerve, and on the elucidation of their potential involvement during glaucoma pathogenesis. Additionally, we describe the insecure balance between detrimental and potential beneficial MMP activities during central nervous system recovery and how MMP-based therapies could help to overcome the current pitfalls in the development of retinal ganglion cell neuroprotection and axon regeneration approaches for the treatment of glaucoma.
Current Eye Research | 2015
Eline Dekeyster; Jeroen Aerts; Francisco J. Valiente-Soriano; Lies De Groef; Samme Vreysen; Manuel Salinas-Navarro; Manuel Vidal-Sanz; Lutgarde Arckens; Lieve Moons
Abstract Purpose: Glaucoma is a group of optic neuropathies characterized by the loss of retinal ganglion cells (RGCs). Since ocular hypertension (OHT) is a main risk factor, current therapies are predominantly based on lowering eye pressure. However, a subset of treated patients continues to lose vision. More research into pathological mechanisms underlying glaucoma is therefore warranted in order to develop novel therapeutic strategies. In this study we investigated the impact of OHT from eye to brain in mice. Methods: Monocular hypertension (mOHT) was induced in CD-1 mice by laser photocoagulation (LP) of the perilimbal and episcleral veins. The impact on the retina and its main direct target area, the superficial superior colliculus (sSC), was examined via immunostainings for Brn3a, VGluT2 and GFAP. Alterations in neuronal activity in V1 and extrastriate areas V2L and V2M were assessed using in situ hybridization for the activity reporter gene zif268. Results: Transient mOHT resulted in diffuse and sectorial RGC degeneration. In the sSC contralateral to the OHT eye, a decrease in VGluT2 immunopositive synaptic connections was detected one week post LP, which appeared to be retinotopically linked to the sectorial RGC degeneration patterns. In parallel, hypoactivity was discerned in contralateral retinotopic projection zones in V1 and V2. Despite complete cortical reactivation 4 weeks post LP, in the sSC no evidence for recovery of RGC synapse density was found and also the concomitant inflammation was not completely resolved. Nevertheless, sSC neurons appeared healthy upon histological inspection and subsequent analysis of cell density revealed no differences between the ipsi- and contralateral sSC. Conclusion: In addition to RGC death, OHT induces loss of synaptic connections and neuronal activity in the visual pathway and is accompanied by an extensive immune response. Our findings stress the importance of looking beyond the eye and including the whole visual system in glaucoma research.
PLOS ONE | 2015
Eline Dekeyster; Emiel Geeraerts; Tom Buyens; Chris Van den Haute; Veerle Baekelandt; Lies De Groef; Manuel Salinas-Navarro; Lieve Moons
According to the neurotrophin deprivation hypothesis, diminished retrograde delivery of neurotrophic support during an early stage of glaucoma pathogenesis is one of the main triggers that induce retinal ganglion cell (RGC) degeneration. Therefore, interfering with neurotrophic signaling seems an attractive strategy to achieve neuroprotection. Indeed, exogenous neurotrophin administration to the eye has been shown to reduce loss of RGCs in animal models of glaucoma; however, the neuroprotective effect was mostly insufficient for sustained RGC survival. We hypothesized that treatment at the level of neurotrophin-releasing brain areas might be beneficial, as signaling pathways activated by target-derived neurotrophins are suggested to differ from pathways that are initiated at the soma membrane. In our study, first, the spatiotemporal course of RGC degeneration was characterized in mice subjected to optic nerve crush (ONC) or laser induced ocular hypertension (OHT). Subsequently, the well-known neurotrophin brain-derived neurotrophic factor (BDNF) was chosen as the lead molecule, and the levels of BDNF and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), were examined in the mouse retina and superior colliculus (SC) upon ONC and OHT. Both models differentially influenced BDNF and TrkB levels. Next, we aimed for RGC protection through viral vector-mediated upregulation of collicular BDNF, thought to boost the retrograde neurotrophin delivery. Although the previously reported temporary neuroprotective effect of intravitreally delivered recombinant BDNF was confirmed, viral vector-induced BDNF overexpression in the SC did not result in protection of the RGCs in the glaucoma models used. These findings most likely relate to decreased neurotrophin responsiveness upon vector-mediated BDNF overexpression. Our results highlight important insights concerning the complexity of neurotrophic factor treatments that should surely be considered in future neuroprotective strategies.
Molecular and Cellular Neuroscience | 2013
Mieke Verslegers; Inge Van Hove; Tom Buyens; Eline Dekeyster; Ellen Knevels; Lieve Moons
During the first postnatal days in the mouse, granule cells (GCs) undergo massive proliferation, which then gradually decreases. Matrix metalloproteinase-2 (MMP-2), a Zn(2+)-dependent proteolytic enzyme, is involved in a wide variety of pathological and physiological pathways. Evidence for a role of this proteinase in cell proliferation is emerging, reporting its involvement in pathological proliferation, as well as during neurogenesis and developmental proliferation of non-CNS tissues. In this study, MMP-2 protein expression was observed within the early postnatal cerebellar cortex, predominantly in Purkinje cells and within the GC proliferative zone, i.e. the superficial external granular layer (EGL). Consistently, the spatiotemporal MMP-2 mRNA and protein profiles highly correlated with the peak of GC precursor (GCP) proliferation and detailed morphometric analyses of MMP-2 deficient cerebella revealed a thinner EGL due to a decreased GCP proliferation. BrdU cumulative experiments, performed to measure the length of different cell cycle phases, further disclosed a transiently prolonged S-phase in MMP-2 deficient GCPs during early cerebellar development. In consequence, MMP-2 deficient animals displayed a transient delay in GC migration towards the IGL. In conclusion, our findings provide important evidence for a role for MMP-2 in neuronal proliferation and cell cycle kinetics in the developing CNS.
Ageing Research Reviews | 2015
Jessie Van houcke; Lies De Groef; Eline Dekeyster; Lieve Moons
Considering the increasing number of elderly in the worlds population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age.
Experimental Eye Research | 2016
Lies De Groef; Eline Dekeyster; Emiel Geeraerts; Evy Lefevere; Ingeborg Stalmans; Manuel Salinas-Navarro; Lieve Moons
Mouse disease models have proven indispensable in glaucoma research, yet the complexity of the vast number of models and mouse strains has also led to confusing findings. In this study, we evaluated baseline intraocular pressure, retinal histology, and retinofugal projections in three mouse strains commonly used in glaucoma research, i.e. C57Bl/6, C57Bl/6-Tyr(c), and CD-1 mice. We found that the mouse strains under study do not only display moderate variations in their intraocular pressure, retinal architecture, and retinal ganglion cell density, also the retinofugal projections to the dorsal lateral geniculate nucleus and the superior colliculus revealed striking differences, potentially underlying diverging optokinetic tracking responses and visual acuity. Next, we reviewed the success rate of three models of (glaucomatous) optic neuropathies (intravitreal N-methyl-d-aspartic acid injection, optic nerve crush, and laser photocoagulation-induced ocular hypertension), looking for differences in disease susceptibility between these mouse strains. Different genetic backgrounds and albinism led to differential susceptibility to experimentally induced retinal ganglion cell death among these three mouse strains. Overall, CD-1 mice appeared to have the highest sensitivity to retinal ganglion cell damage, while the C57Bl/6 background was more resistant in the three models used.
Brain Structure & Function | 2015
Mieke Verslegers; Inge Van Hove; Eline Dekeyster; Ilse Gantois; Tjing-Tjing Hu; Rudi D’Hooge; Lutgarde Arckens; Lieve Moons
Experimental Eye Research | 2016
Emiel Geeraerts; Eline Dekeyster; Djoere Gaublomme; Manuel Salinas-Navarro; L. De Groef; Lieve Moons
Acta Ophthalmologica | 2014
Eline Dekeyster; Jeroen Aerts; Fj Valiente-Soriano; L. De Groef; Manuel Salinas-Navarro; Manuel Vidal-Sanz; Lutgarde Arckens; Lieve Moons