Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inge Van Hove is active.

Publication


Featured researches published by Inge Van Hove.


Progress in Neurobiology | 2013

Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system

Mieke Verslegers; Kim Lemmens; Inge Van Hove; Lieve Moons

It has been 50 years since Gross and Lapiere discovered collagenolytic activity during tadpole tail metamorphosis, which was later on revealed as MMP-1, the founding member of the matrix metalloproteinases (MMPs). Currently, MMPs constitute a large group of endoproteases that are not only able to cleave all protein components of the extracellular matrix, but also to activate or inactivate many other signaling molecules, such as receptors, adhesion molecules and growth factors. Elevated MMP levels are associated with an increasing number of injuries and disorders, such as cancer, inflammation and auto-immune diseases. Yet, MMP upregulation has also been implicated in many physiological functions such as embryonic development, wound healing and angiogenesis and therefore, these proteinases are considered to be crucial mediators in many biological processes. Over the past decennia, MMP research has gained considerable attention in several pathologies, most prominently in the field of cancer metastasis, and more recent investigations also focus on the nervous system, with a striking emphasis on the gelatinases, MMP-2 and MMP-9. Unfortunately, the contribution of these gelatinases to neuropathological disorders, like multiple sclerosis and Alzheimers disease, has overshadowed their potential as modulators of fundamental nervous system functions. Within this review, we wish to highlight the currently known or suggested actions of MMP-2 and MMP-9 in the developing and adult nervous system and their potential to improve repair or regeneration after nervous system injury.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Reevaluation of the Role of VEGF-B Suggests a Restricted Role in the Revascularization of the Ischemic Myocardium

Xuri Li; Marc Tjwa; Inge Van Hove; Berndt Enholm; Elke Neven; Karri Paavonen; Michael Jeltsch; Toni Diez Juan; Richard E. Sievers; Emmanuel Chorianopoulos; Hiromichi Wada; Maarten Vanwildemeersch; Agnès Noël; Jean-Michel Foidart; Matthew L. Springer; Georges von Degenfeld; Mieke Dewerchin; Helen M. Blau; Kari Alitalo; Ulf J. Eriksson; Peter Carmeliet; Lieve Moons

Objective—The endogenous role of the VEGF family member vascular endothelial growth factor-B (VEGF-B) in pathological angiogenesis remains unclear. Methods and Results—We studied the role of VEGF-B in various models of pathological angiogenesis using mice lacking VEGF-B (VEGF-B−/−) or overexpressing VEGF-B167. After occlusion of the left coronary artery, VEGF-B deficiency impaired vessel growth in the ischemic myocardium whereas, in wild-type mice, VEGF-B167 overexpression enhanced revascularization of the infarct and ischemic border zone. By contrast, VEGF-B deficiency did not affect vessel growth in the wounded skin, hypoxic lung, ischemic retina, or ischemic limb. Moreover, VEGF-B167 overexpression failed to enhance vascular growth in the skin or ischemic limb. Conclusion—VEGF-B appears to have a relatively restricted angiogenic activity in the ischemic heart. These insights might offer novel therapeutic opportunities.


Journal of Neurochemistry | 2012

Matrix metalloproteinase-3 in the central nervous system: a look on the bright side

Inge Van Hove; Kim Lemmens; Sarah Van de Velde; Mieke Verslegers; Lieve Moons

Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell‐matrix and cell‐cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non‐ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase‐3 (MMP‐3) or stromelysin‐1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimers disease, Parkinsons disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP‐3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP‐3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP‐3 up‐regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.


The Journal of Neuroscience | 2015

Amyloid β Oligomers Disrupt Blood–CSF Barrier Integrity by Activating Matrix Metalloproteinases

Marjana Brkic; Sriram Balusu; Elien Van Wonterghem; Nina Gorlé; Iryna Benilova; Anna Kremer; Inge Van Hove; Lieve Moons; Bart De Strooper; Selma Kanazir; Claude Libert; Roosmarijn E. Vandenbroucke

The blood–CSF barrier (BCSFB) consists of a monolayer of choroid plexus epithelial (CPE) cells that maintain CNS homeostasis by producing CSF and restricting the passage of undesirable molecules and pathogens into the brain. Alzheimers disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid β (Aβ) plaques and neurofibrillary tangles in the brain. Recent research shows that Alzheimers disease is associated with morphological changes in CPE cells and compromised production of CSF. Here, we studied the direct effects of Aβ on the functionality of the BCSFB. Intracerebroventricular injection of Aβ1–42 oligomers into the cerebral ventricles of mice, a validated Alzheimers disease model, caused induction of a cascade of detrimental events, including increased inflammatory gene expression in CPE cells and increased levels of proinflammatory cytokines and chemokines in the CSF. It also rapidly affected CPE cell morphology and tight junction protein levels. These changes were associated with loss of BCSFB integrity, as shown by an increase in BCSFB leakage. Aβ1–42 oligomers also increased matrix metalloproteinase (MMP) gene expression in the CPE and its activity in CSF. Interestingly, BCSFB disruption induced by Aβ1–42 oligomers did not occur in the presence of a broad-spectrum MMP inhibitor or in MMP3-deficient mice. These data provide evidence that MMPs are essential for the BCSFB leakage induced by Aβ1–42 oligomers. Our results reveal that Alzheimers disease-associated soluble Aβ1–42 oligomers induce BCSFB dysfunction and suggest MMPs as a possible therapeutic target. SIGNIFICANCE STATEMENT No treatments are yet available to cure Alzheimers disease; however, soluble Aβ oligomers are believed to play a crucial role in the neuroinflammation that is observed in this disease. Here, we studied the effect of Aβ oligomers on the often neglected barrier between blood and brain, called the blood–CSF barrier (BCSFB). This BCSFB is formed by the choroid plexus epithelial cells and is important in maintaining brain homeostasis. We observed Aβ oligomer-induced changes in morphology and loss of BCSFB integrity that might play a role in Alzheimers disease progression. Strikingly, both inhibition of matrix metalloproteinase (MMP) activity and MMP3 deficiency could protect against the detrimental effects of Aβ oligomer. Clearly, our results suggest that MMP inhibition might have therapeutic potential.


Investigative Ophthalmology & Visual Science | 2013

MMPs in the Trabecular Meshwork: Promising Targets for Future Glaucoma Therapies?

Lies De Groef; Inge Van Hove; Eline Dekeyster; Ingeborg Stalmans; Lieve Moons

Glaucoma is one of the worlds most common blinding diseases, affecting more than 60 million people worldwide. Although the disease presents as a neurodegenerative disorder affecting retinal ganglion cell axons in the optic nerve and their somata in the retina, the elicitors of this optic neuropathy are often located outside the neuroretina. Disturbances in aqueous humor outflow, leading to ocular hypertension, are considered to be the major risk factor for the development of glaucoma. Although an amplitude of pharmacological and surgical measures is available to lower IOP in glaucoma patients, these are not always sufficient to halt the disease. Multiple surveys in glaucoma patients, as well as in vitro studies in anterior segment explant or cell cultures, reported changes in the expression and activity of several matrix metalloproteinases (MMPs) in the aqueous humor and trabecular meshwork, in response to elevated IOP. In this review, we describe MMPs as important modulators of aqueous humor outflow, functioning in a feedback mechanism that continuously remodels the trabecular meshwork extracellular matrix composition in order to maintain a stable outflow resistance and IOP. We review the evidence for the involvement of MMPs in glaucoma disease onset and investigate their potential as therapeutic targets for the development of future glaucoma therapies.


Investigative Ophthalmology & Visual Science | 2014

MMPs in the neuroretina and optic nerve: modulators of glaucoma pathogenesis and repair?

Lies De Groef; Inge Van Hove; Eline Dekeyster; Ingeborg Stalmans; Lieve Moons

Multiple studies in glaucoma patients and in animal models of spontaneous and experimentally-induced glaucoma, reported changes in the expression and activity of several matrix metalloproteinases (MMPs) in the retina, optic nerve, aqueous humor, and trabecular meshwork. These data have led to the hypothesis that MMPs might be involved in glaucoma onset and/or disease progression. However, reports are conflicting and research aiming at providing a clear definition of their causative role is lacking. In glaucoma, MMPs are thought to act at two different levels. In the trabecular meshwork, they fine-tune the aqueous humor outflow rate and intraocular pressure, in the neuroretina and optic nerve, however, their role during glaucoma disease progression is much less clear. This review provides a comprehensive overview of the research conducted on the expression and function of MMPs in the retina and optic nerve, and on the elucidation of their potential involvement during glaucoma pathogenesis. Additionally, we describe the insecure balance between detrimental and potential beneficial MMP activities during central nervous system recovery and how MMP-based therapies could help to overcome the current pitfalls in the development of retinal ganglion cell neuroprotection and axon regeneration approaches for the treatment of glaucoma.


Molecular Neurobiology | 2012

An aberrant cerebellar development in mice lacking matrix metalloproteinase-3.

Inge Van Hove; Mieke Verslegers; Tom Buyens; Nathalie Delorme; Kim Lemmens; Stijn Stroobants; Ilse Gantois; Rudi D’Hooge; Lieve Moons

Cell–cell and cell–matrix interactions are necessary for neuronal patterning and brain wiring during development. Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of remodelling the pericellular environment and regulating signaling pathways through cleavage of a large degradome. MMPs have been suggested to affect cerebellar development, but the specific role of different MMPs in cerebellar morphogenesis remains unclear. Here, we report a role for MMP-3 in the histogenesis of the mouse cerebellar cortex. MMP-3 expression peaks during the second week of postnatal cerebellar development and is most prominently observed in Purkinje cells (PCs). In MMP-3 deficient (MMP-3−/−) mice, a protracted granule cell (GC) tangential migration and a delayed GC radial migration results in a thicker and persistent external granular layer, a retarded arrival of GCs in the inner granular layer, and a delayed GABAergic interneuron migration. Importantly, these neuronal migration anomalies, as well as the consequent disturbed synaptogenesis on PCs, seem to be caused by an abnormal PC dendritogenesis, which results in reduced PC dendritic trees in the adult cerebellum. Of note, these developmental and adult cerebellar defects might contribute to the aberrant motor phenotype observed in MMP-3−/− mice and suggest an involvement of MMP-3 in mouse cerebellar development.


Progress in Neurobiology | 2015

Towards axonal regeneration and neuroprotection in glaucoma: Rho kinase inhibitors as promising therapeutics.

Sarah Van de Velde; Lies De Groef; Ingeborg Stalmans; Lieve Moons; Inge Van Hove

Due to a prolonged life expectancy worldwide, the incidence of age-related neurodegenerative disorders such as glaucoma is increasing. Glaucoma is the second cause of blindness, resulting from a slow and progressive loss of retinal ganglion cells (RGCs) and their axons. Up to now, intraocular pressure (IOP) reduction is the only treatment modality by which ophthalmologists attempt to control disease progression. However, not all patients benefit from this therapy, and the pathophysiology of glaucoma is not always associated with an elevated IOP. These limitations, together with the multifactorial etiology of glaucoma, urge the pressing medical need for novel and alternative treatment strategies. Such new therapies should focus on preventing or retarding RGC death, but also on repair of injured axons, to ultimately preserve or improve structural and functional connectivity. In this respect, Rho-associated coiled-coil forming protein kinase (ROCK) inhibitors hold a promising potential to become very prominent drugs for future glaucoma treatment. Their field of action in the eye does not seem to be restricted to IOP reduction by targeting the trabecular meshwork or improving filtration surgery outcome. Indeed, over the past years, important progress has been made in elucidating their ability to improve ocular blood flow, to prevent RGC death/increase RGC survival and to retard axonal degeneration or induce proper axonal regeneration. Within this review, we aim to highlight the currently known capacity of ROCK inhibition to promote neuroprotection and regeneration in several in vitro, ex vivo and in vivo experimental glaucoma models.


PLOS ONE | 2013

Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development.

Els Janssens; Djoere Gaublomme; Lies De Groef; Veerle Darras; Lut Arckens; Nathalie Delorme; Filip Claes; Inge Van Hove; Lieve Moons

Background Matrix metalloproteinases (MMPs) are members of the metzincin superfamily of proteinases that cleave structural elements of the extracellular matrix and many molecules involved in signal transduction. Although there is evidence that MMPs promote the proper development of retinotectal projections, the nature and working mechanisms of specific MMPs in retinal development remain to be elucidated. Here, we report a role for zebrafish Mmp14a, one of the two zebrafish paralogs of human MMP14, in retinal neurogenesis and retinotectal development. Results Whole mount in situ hybridization and immunohistochemical stainings for Mmp14a in developing zebrafish embryos reveal expression in the optic tectum, in the optic nerve and in defined retinal cell populations, including retinal ganglion cells (RGCs). Furthermore, Mmp14a loss-of-function results in perturbed retinoblast cell cycle kinetics and consequently, in a delayed retinal neurogenesis, differentiation and lamination. These Mmp14a-dependent retinal defects lead to microphthalmia and a significantly reduced innervation of the optic tectum (OT) by RGC axons. Mmp14b, on the contrary, does not appear to alter retinal neurogenesis or OT innervation. As mammalian MMP14 is known to act as an efficient MMP2-activator, we also explored and found a functional link and a possible co-involvement of Mmp2 and Mmp14a in zebrafish retinotectal development. Conclusion Both the Mmp14a expression in the developing visual system and the Mmp14a loss-of-function phenotype illustrate a critical role for Mmp14a activity in retinal and retinotectal development.


The Journal of Comparative Neurology | 2016

Matrix metalloproteinases as promising regulators of axonal regrowth in the injured adult zebrafish retinotectal system

Kim Lemmens; Ilse Bollaerts; Stitipragyan Bhumika; Lies De Groef; Jessie Van houcke; Veerle Darras; Inge Van Hove; Lieve Moons

Overcoming the failure of axon regeneration in the mammalian central nervous system (CNS) after injury remains a major challenge, which makes the search for proregenerative molecules essential. Matrix metalloproteinases (MMPs) have been implicated in axonal outgrowth during CNS development and show increased expression levels during vertebrate CNS repair. In mammals, MMPs are believed to alter the suppressive extracellular matrix to become more permissive for axon regrowth. We investigated the role of MMPs in axonal regeneration following optic nerve crush (ONC) in adult zebrafish, which fully recover from such injuries due to a high intrinsic axon growth capacity and a less inhibitory environment. Lowering general retinal MMP activity through intravitreal injections of GM6001 after ONC strongly reduced retinal ganglion cell (RGC) axonal regrowth, without influencing RGC survival. Based on a recently performed transcriptome profiling study, the expression pattern of four MMPs after ONC was determined via combined use of western blotting and immunostainings. Mmp‐2 and ‐13a were increasingly present in RGC somata during axonal regrowth. Moreover, Mmp‐2 and ‐9 became upregulated in regrowing RGC axons and inner plexiform layer (IPL) synapses, respectively. In contrast, after an initial rise in IPL neurites and RGC axons during the injury response, Mmp‐14 expression decreased during regeneration. Altogether, a phase‐dependent expression pattern for each specific MMP was observed, implicating them in axonal regrowth and inner retina remodeling after injury. In conclusion, these data suggest a novel, neuron‐intrinsic function for multiple MMPs in axon regrowth that is distinct from breaking down environmental barriers. J. Comp. Neurol. 524:1472–1493, 2016.

Collaboration


Dive into the Inge Van Hove's collaboration.

Top Co-Authors

Avatar

Lieve Moons

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lies De Groef

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kim Lemmens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lieve Moons

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Tom Buyens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ilse Bollaerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jessie Van houcke

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Evy Lefevere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mieke Verslegers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eline Dekeyster

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge