Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Izaurralde is active.

Publication


Featured researches published by Elisa Izaurralde.


Nature Reviews Genetics | 2011

Gene silencing by microRNAs: contributions of translational repression and mRNA decay

Eric Huntzinger; Elisa Izaurralde

Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.


Nature Reviews Molecular Cell Biology | 2007

P bodies: at the crossroads of post-transcriptional pathways

Ana Eulalio; Isabelle Behm-Ansmant; Elisa Izaurralde

Post-transcriptional processes have a central role in the regulation of eukaryotic gene expression. Although it has been known for a long time that these processes are functionally linked, often by the use of common protein factors, it has only recently become apparent that many of these processes are also physically connected. Indeed, proteins that are involved in mRNA degradation, translational repression, mRNA surveillance and RNA-mediated gene silencing, together with their mRNA targets, colocalize within discrete cytoplasmic domains known as P bodies. The available evidence indicates that P bodies are sites where mRNAs that are not being translated accumulate, the information carried by associated proteins and regulatory RNAs is integrated, and their fate — either translation, silencing or decay — is decided.


The EMBO Journal | 2000

The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions

Hervé Le Hir; Elisa Izaurralde; Lynne E. Maquat; Melissa J. Moore

Eukaryotic mRNAs exist in vivo as ribonucleoprotein particles (mRNPs). The protein components of mRNPs have important functions in mRNA metabolism, including effects on subcellular localization, translational efficiency and mRNA half‐life. There is accumulating evidence that pre‐mRNA splicing can alter mRNP structure and thereby affect downstream mRNA metabolism. Here, we report that the spliceosome stably deposits several proteins on mRNAs, probably as a single complex of ∼335 kDa. This complex protects 8 nucleotides of mRNA from complete RNase digestion at a conserved position 20–24 nucleotides upstream of exon–exon junctions. Splicing‐dependent RNase protection of this region was observed in both HeLa cell nuclear extracts and Xenopus laevis oocyte nuclei. Immunoprecipitations revealed that five components of the complex are the splicing‐associated factors SRm160, DEK and RNPS1, the mRNA‐associated shuttling protein Y14 and the mRNA export factor REF. Possible functions for this complex in nucleocytoplasmic transport of spliced mRNA, as well as the nonsense‐mediated mRNA decay pathway, are discussed.


The EMBO Journal | 2001

The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense‐mediated mRNA decay

Hervé Le Hir; David Gatfield; Elisa Izaurralde; Melissa J. Moore

We recently reported that spliceosomes alter messenger ribonucleoprotein particle (mRNP) composition by depositing several proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. When assembled in vitro, this so‐called ‘exon–exon junction complex’ (EJC) contains at least five proteins: SRm160, DEK, RNPS1, Y14 and REF. To better investigate its functional attributes, we now describe a method for generating spliced mRNAs both in vitro and in vivo that either do or do not carry the EJC. Analysis of these mRNAs in Xenopus laevis oocytes revealed that this complex is the species responsible for enhancing nucleocytoplasmic export of spliced mRNAs. It does so by providing a strong binding site for the mRNA export factors REF and TAP/p15. Moreover, by serving as an anchoring point for the factors Upf2 and Upf3, the EJC provides a direct link between splicing and nonsense‐mediated mRNA decay. Finally, we show that the composition of the EJC is dynamic in vivo and is subject to significant evolution upon mRNA export to the cytoplasm.


Molecular and Cellular Biology | 2007

P-Body Formation Is a Consequence, Not the Cause, of RNA-Mediated Gene Silencing

Ana Eulalio; Isabelle Behm-Ansmant; Daniel Schweizer; Elisa Izaurralde

ABSTRACT P bodies are cytoplasmic domains that contain proteins involved in diverse posttranscriptional processes, such as mRNA degradation, nonsense-mediated mRNA decay (NMD), translational repression, and RNA-mediated gene silencing. The localization of these proteins and their targets in P bodies raises the question of whether their spatial concentration in discrete cytoplasmic domains is required for posttranscriptional gene regulation. We show that processes such as mRNA decay, NMD, and RNA-mediated gene silencing are functional in cells lacking detectable microscopic P bodies. Although P bodies are not required for silencing, blocking small interfering RNA or microRNA silencing pathways at any step prevents P-body formation, indicating that P bodies arise as a consequence of silencing. Consistently, we show that releasing mRNAs from polysomes is insufficient to trigger P-body assembly: polysome-free mRNAs must enter silencing and/or decapping pathways to nucleate P bodies. Thus, even though P-body components play crucial roles in mRNA silencing and decay, aggregation into P bodies is not required for function but is instead a consequence of their activity.


Nature Reviews Genetics | 2015

Towards a molecular understanding of microRNA-mediated gene silencing

Stefanie Jonas; Elisa Izaurralde

MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5′-to-3′ exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5′-to-3′ degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging.


Cell | 1994

A nuclear cap binding protein complex involved in pre-mRNA splicing

Elisa Izaurralde; Joe D. Lewis; Caroline McGuigan; Marzena Jankowska; Edward Darzynkiewicz; Iain W. Mattaj

A cap-binding protein complex (CBC) present in the nuclei of HeLa cells has been characterized. Purified CBC consists of two previously identified proteins, CBP80 and CBP20. These proteins are shown to cofractionate to apparent homogeneity and to be coimmunoprecipitable with anti-CBP80 antibodies. Analysis of the inhibition of pre-mRNA splicing in vitro and in vivo by chemically modified analogs of the cap structure, and of the binding of these analogs to CBC in vitro, suggests a role for the complex in splicing. Extracts immunodepleted of CBC do not efficiently splice an adenoviral pre-mRNA owing to blockage of an early step in splicing complex formation. CBC may therefore play a role in pre-mRNA recognition.


Nature | 2003

Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain

Andreas Lingel; Bernd Simon; Elisa Izaurralde; Michael Sattler

RNA interference is a conserved mechanism that regulates gene expression in response to the presence of double-stranded (ds)RNAs. The RNase III-like enzyme Dicer first cleaves dsRNA into 21–23-nucleotide small interfering RNAs (siRNAs). In the effector step, the multimeric RNA-induced silencing complex (RISC) identifies messenger RNAs homologous to the siRNAs and promotes their degradation. The Argonaute 2 protein (Ago2) is a critical component of RISC. Both Argonaute and Dicer family proteins contain a common PAZ domain whose function is unknown. Here we present the three-dimensional nuclear magnetic resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic residues. The nucleic-acid-binding patch is located in a cleft between the surface of a central β-barrel and a conserved module comprising strands β3, β4 and helix α3. Because critical structural residues and the binding surface are conserved, we suggest that PAZ domains in all members of the Argonaute and Dicer families adopt a similar fold with nucleic-acid binding function, and that this plays an important part in gene silencing.


RNA | 2000

REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export.

Françoise Stutz; Angela Bachi; Tobias Doerks; Isabelle C. Braun; Bertrand Séraphin; Matthias Wilm; Peer Bork; Elisa Izaurralde

Vertebrate TAP and its yeast ortholog Mex67p are involved in the export of messenger RNAs from the nucleus. TAP has also been implicated in the export of simian type D viral RNAs bearing the constitutive transport element (CTE). Although TAP directly interacts with CTE-bearing RNAs, the mode of interaction of TAP/Mex67p with cellular mRNAs is different from that with the CTE RNA and is likely to be mediated by protein-protein interactions. Here we show that Mex67p directly interacts with Yra1p, an essential yeast hnRNP-like protein. This interaction is evolutionarily conserved as Yra1p also interacts with TAP. Conditional expression in yeast cells implicates Yra1 p in the export of cellular mRNAs. Database searches revealed that Yra1p belongs to an evolutionarily conserved family of hnRNP-like proteins having more than one member in Mus musculus, Xenopus laevis, Caenorhabditis elegans, and Schizosaccharomyces pombe and at least one member in several species including plants. The murine members of the family directly interact with TAP. Because members of this protein family are characterized by the presence of one RNP-motif RNA-binding domain and exhibit RNA-binding activity, we called these proteins REF-bps for RNA and export factor binding proteins. Thus, Yra1p and members of the REF family of hnRNP-like proteins may facilitate the interaction of TAP/Mex67p with cellular mRNAs.


Nature Structural & Molecular Biology | 2008

GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay

Ana Eulalio; Eric Huntzinger; Elisa Izaurralde

MicroRNAs (miRNAs) silence gene expression by binding 3′ untranslated regions of target mRNAs. Recent studies suggested silencing is achieved through either recruitment of eIF6, which prevents ribosome assembly, or displacement of eIF4E from the mRNA 5′ cap structure. Using Drosophila melanogaster cells, we show that eIF6 is not required for silencing. In contrast, silencing is abolished by mutating Argonaute 1 (AGO1) at two conserved phenylalanine residues predicted to mediate binding to the cap structure. Notably, we found these mutations also prevented AGO1 from interacting with GW182 and miRNAs, indicating that the essential role of these residues is unrelated to cap binding. Consistently, depleting GW182 or overexpressing its AGO1 binding domain relieved silencing of all reporters tested, including those lacking a poly(A) tail. Together, our findings show that miRNA function is effected by AGO1–GW182 complexes and the role of GW182 in silencing goes beyond promoting deadenylation.

Collaboration


Dive into the Elisa Izaurralde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Rehwinkel

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iain W. Mattaj

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge