Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabetta Monaci is active.

Publication


Featured researches published by Elisabetta Monaci.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular and cellular signatures of human vaccine adjuvants.

F. Mosca; Elaine Tritto; Alessandro Muzzi; Elisabetta Monaci; Fabio Bagnoli; C. Iavarone; Derek O'hagan; Rino Rappuoli; E. De Gregorio

Oil-in-water emulsions are potent human adjuvants used for effective pandemic influenza vaccines; however, their mechanism of action is still unknown. By combining microarray and immunofluorescence analysis, we monitored the effects of the adjuvants MF59 oil-in-water emulsion, CpG, and alum in the mouse muscle. MF59 induced a time-dependent change in the expression of 891 genes, whereas CpG and alum regulated 387 and 312 genes, respectively. All adjuvants modulated a common set of 168 genes and promoted antigen-presenting cell recruitment. MF59 was the stronger inducer of cytokines, cytokine receptors, adhesion molecules involved in leukocyte migration, and antigen-presentation genes. In addition, MF59 triggered a more rapid influx of CD11b+ blood cells compared with other adjuvants. The early biomarkers selected by microarray, JunB and Ptx3, were used to identify skeletal muscle as a direct target of MF59. We propose that oil-in-water emulsions are the most efficient human vaccine adjuvants, because they induce an early and strong immunocompetent environment at the injection site by targeting muscle cells.


Journal of Immunology | 2008

The Adjuvants Aluminum Hydroxide and MF59 Induce Monocyte and Granulocyte Chemoattractants and Enhance Monocyte Differentiation toward Dendritic Cells

Anja Seubert; Elisabetta Monaci; Mariagrazia Pizza; Derek O'hagan; Andreas Wack

Aluminum hydroxide (alum) and the oil-in-water emulsion MF59 are widely used, safe and effective adjuvants, yet their mechanism of action is poorly understood. We assessed the effects of alum and MF59 on human immune cells and found that both induce secretion of chemokines, such as CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP-1β), and CXCL8 (IL-8), all involved in cell recruitment from blood into peripheral tissue. Alum appears to act mainly on macrophages and monocytes, whereas MF59 additionally targets granulocytes. Accordingly, monocytes and granulocytes migrate toward MF59-conditioned culture supernatants. In monocytes, both adjuvants lead to increased endocytosis, enhanced surface expression of MHC class II and CD86, and down-regulation of the monocyte marker CD14, which are all phenotypic changes consistent with a differentiation toward dendritic cells (DCs). When monocyte differentiation into DCs is induced by addition of cytokines, these adjuvants enhanced the acquisition of a mature DC phenotype and lead to an earlier and higher expression of MHC class II and CD86. In addition, MF59 induces further up-regulation of the maturation marker CD83 and the lymph node-homing receptor CCR7 on differentiating monocytes. Alum induces a similar but not identical pattern that clearly differs from the response to LPS. This model suggests a common adjuvant mechanism that is distinct from that mediated by danger signals. We conclude that during vaccination, adjuvants such as MF59 may increase recruitment of immune cells into the injection site, accelerate and enhance monocyte differentiation into DCs, augment Ag uptake, and facilitate migration of DCs into tissue-draining lymph nodes to prime adaptive immune responses.


Molecular Microbiology | 2005

Ng-MIP, a surface-exposed lipoprotein of Neisseria gonorrhoeae, has a peptidyl-prolyl cis/trans isomerase (PPIase) activity and is involved in persistence in macrophages.

Rosanna Leuzzi; Laura Serino; Maria Scarselli; Silvana Savino; Maria Rita Fontana; Elisabetta Monaci; Annarita Taddei; Gunter Fischer; Rino Rappuoli; Mariagrazia Pizza

Macrophage infectivity potentiators (MIPs) are a family of surface‐exposed virulence factors of intracellular microorganisms such as Legionella, Chlamydia and Trypanosoma. These proteins display peptidyl‐prolyl cis/trans isomerase (PPIase) activity that is inhibited by immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization in Neisseria gonorrhoeae of Ng‐MIP, a surface‐exposed lipoprotein with high homology to MIPs. The protein is an homodimer with rapamycin‐inhibited PPIase activity confirming that it is a functional member of the MIP family. A knock‐out strain, generated by deletion of the mip gene in N. gonorrhoeae F62 strain, was evaluated for its role in infection of mouse and human macrophages. We show that Ng‐MIP promotes the intracellular survival of N. gonorrhoeae in macrophages, highlighting a possible role of this protein in promoting the persistence of gonococcal infection.


Science Translational Medicine | 2014

Rational design of small molecules as vaccine adjuvants

Manmohan Singh; Andrew T. Miller; Francesco Doro; David Skibinski; M. Lamine Mbow; Simone Bufali; Ann E. Herman; Alex Cortez; Yongkai Li; Bishnu P. Nayak; Elaine Tritto; Christophe M. Filippi; Gillis Otten; Luis A. Brito; Elisabetta Monaci; Chun Li; Susanna Aprea; Sara Valentini; Donatello Laera; Brunella Brunelli; Elena Caproni; Padma Malyala; Rekha G. Panchal; Travis K. Warren; Sina Bavari; Derek O'hagan; Michael P. Cooke; Nicholas M. Valiante

Small-molecule immune potentiators can be engineered to be potent adjuvants with localized innate immune activation and short in vivo residence times. Better Adjuvants Through Chemistry Vaccine development has come a long way since Jenner first noticed that cowpox protected against smallpox. And yet, many vaccines do not work well alone; adjuvants are included with the vaccine to boost the immune response. Despite the critical role of adjuvants in vaccine efficacy, new adjuvant development has been empirical. Now, Wu et al. report the rational optimization of small-molecule immune potentiators (SMIPs) as adjuvants. These SMIPs were engineered to have limited bioavailability and remain localized, inducing temporally and spatially restricted inflammation. This systematic approach to optimizing adjuvant properties may allow for improved immune responses to vaccines with fewer side effects. Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus.

Fabio Bagnoli; Maria Rita Fontana; Elisabetta Soldaini; Ravi Mishra; Luigi Fiaschi; Elena Cartocci; Vincenzo Nardi-Dei; Paolo Ruggiero; Sarah Nosari; Maria Grazia De Falco; Giuseppe Lofano; Sara Marchi; Bruno Galletti; Paolo Mariotti; Antonina Torre; Silvia Maccari; Maria Scarselli; C. Daniela Rinaudo; Naoko Inoshima; Silvana Savino; Elena Mori; Silvia Rossi-Paccani; Barbara Baudner; Michele Pallaoro; Erwin Swennen; Roberto Petracca; Cecilia Brettoni; Sabrina Liberatori; Nathalie Norais; Elisabetta Monaci

Significance Staphylococcus aureus is a human pathogen causing life-threatening infections. The high incidence of methicillin-resistant S. aureus isolates resistant to all antibiotics makes the development of anti-S. aureus vaccines an urgent medical need. However, the unique ability of S. aureus to produce virulent factors, which counteract virtually all pathways of innate and adaptive immunity, has hampered all vaccine discovery efforts. Starting from the assumption that to be effective a vaccine should induce highly functional antibodies and potentiate the killing capacity of phagocytic cells, we selected a cocktail of five conserved antigens involved in different mechanisms of pathogenesis, and we formulated them with a potent adjuvant. This vaccine provides an unprecedented protective efficacy against S. aureus infection in animal models. Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7–10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17–secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.


Journal of Immunology | 2012

MF59 and Pam3CSK4 Boost Adaptive Responses to Influenza Subunit Vaccine through an IFN Type I-Independent Mechanism of Action

Elena Caproni; Elaine Tritto; Mario Cortese; Alessandro Muzzi; Mosca F; Elisabetta Monaci; Barbara Baudner; Anja Seubert; De Gregorio E

The innate immune pathways induced by adjuvants required to increase adaptive responses to influenza subunit vaccines are not well characterized. We profiled different TLR-independent (MF59 and alum) and TLR-dependent (CpG, resiquimod, and Pam3CSK4) adjuvants for the ability to increase the immunogenicity to a trivalent influenza seasonal subunit vaccine and to tetanus toxoid (TT) in mouse. Although all adjuvants boosted the Ab responses to TT, only MF59 and Pam3CSK4 were able to enhance hemagglutinin Ab responses. To identify innate immune correlates of adjuvanticity to influenza subunit vaccine, we investigated the gene signatures induced by each adjuvant in vitro in splenocytes and in vivo in muscle and lymph nodes using DNA microarrays. We found that flu adjuvanticity correlates with the upregulation of proinflammatory genes and other genes involved in leukocyte transendothelial migration at the vaccine injection site. Confocal and FACS analysis confirmed that MF59 and Pam3CSK4 were the strongest inducers of blood cell recruitment in the muscle compared with the other adjuvants tested. Even though it has been proposed that IFN type I is required for adjuvanticity to influenza vaccines, we found that MF59 and Pam3CSK4 were not good inducers of IFN-related innate immunity pathways. By contrast, resiquimod failed to enhance the adaptive response to flu despite a strong activation of the IFN pathway in muscle and lymph nodes. By blocking IFN type I receptor through a mAb, we confirmed that the adjuvanticity of MF59 and Pam3CSK4 to a trivalent influenza vaccine and to TT is IFN independent.


Molecular Microbiology | 2007

Identification of a new OmpA-like protein in Neisseria gonorrhoeae involved in the binding to human epithelial cells and in vivo colonization

Laura Serino; Barbara Nesta; Rosanna Leuzzi; Maria Rita Fontana; Elisabetta Monaci; Brian T. Mocca; Elena Cartocci; Vega Masignani; Ann E. Jerse; Rino Rappuoli; Mariagrazia Pizza

Outer membrane protein As (OmpAs) are highly conserved proteins within the Enterobacteriaceae family. OmpA contributes to the maintenance of structural membrane integrity and invasion into mammalian cells. In Escherichia coli K1 OmpA also contributes to serum resistance and is involved in the virulence of the bacterium. Here we describe the identification of an OmpA‐like protein in Neisseria gonorrhoeae (Ng‐OmpA). We show that the gonococcal OmpA‐like protein, similarly to E. coli OmpA, plays a significant role in the adhesion and invasion into human cervical carcinoma and endometrial cells and is required for entry into macrophages and intracellular survival. Furthermore, the isogenic knockout ompA mutant demonstrates reduced recovery in a mouse model of infection when compared with the wild‐type strain, suggesting that Ng‐OmpA plays an important role in the in vivo colonization. All together, these data suggest that the newly identified surface exposed protein Ng‐OmpA represents a novel virulence factor of gonococcus.


Journal of Immunology | 2007

The Acquired Immune Response to the Mucosal Adjuvant LTK63 Imprints the Mouse Lung with a Protective Signature

Elaine Tritto; Alessandro Muzzi; Isabella Pesce; Elisabetta Monaci; Sandra Nuti; Grazia Galli; Andreas Wack; Rino Rappuoli; Tracy Hussell; Ennio De Gregorio

LTK63, a nontoxic mutant of Escherichia coli heat labile enterotoxin (LT), is a potent and safe mucosal adjuvant that has also been shown to confer generic protection to several respiratory pathogens. To understand the mechanisms of action underlying the LTK63 protective effect, we analyzed the molecular and cellular events triggered by its administration in vivo. We show here that LTK63 intrapulmonary administration induced in the mouse lung a specific gene expression signature characterized by the up-regulation of cell cycle genes, several host defense genes, chemokines, chemokine receptors, and immune cell-associated genes. Such a transcriptional profile reflected the activation of alveolar macrophages and the recruitment to the lung of T and B cells and innate immune cells such as granulocytes, NK, and dendritic cells. All of these events were T cell dependent and specific for LTK63 because they were absent in SCID and nude mice. Additionally, we showed that LTK63 induces a potent adaptive immune response against itself directed to the lung. We propose that acquired response to LTK63 is the driving force for the local recruitment of both adaptive and innate immune cells. Our data suggest that LTK63 acts as an airway infection mimic that establishes a generic protective environment limiting respiratory infection by innate immune mechanisms and by improving adaptive responses to invading pathogens.


Journal of Immunology | 2015

Oil-in-Water Emulsion MF59 Increases Germinal Center B Cell Differentiation and Persistence in Response to Vaccination

Giuseppe Lofano; Francesca Mancini; Giulia Salvatore; Rocco Cantisani; Elisabetta Monaci; Corrado Carrisi; Simona Tavarini; Chiara Sammicheli; Silvia Rossi Paccani; Elisabetta Soldaini; Donatello Laera; Oretta Finco; Sandra Nuti; Rino Rappuoli; Ennio De Gregorio; Fabio Bagnoli; Sylvie Bertholet

Induction of persistent protective immune responses is a key attribute of a successful vaccine formulation. MF59 adjuvant, an oil-in-water emulsion used in human vaccines, is known to induce persistent high-affinity functional Ab titers and memory B cells, but how it really shapes the Ag-specific B cell compartment is poorly documented. In this study, we characterized the Ab- and Ag-specific B cell compartment in wild-type mice immunized with HlaH35L, a Staphylococcus aureus Ag known to induce measurable functional Ab responses, formulated with MF59 or aluminum salts, focusing on germinal centers (GC) in secondary lymphoid organs. Taking advantage of single-cell flow cytometry analyses, HlaH35L-specific B cells were characterized for the expression of CD38 and GL-7, markers of memory and GC, respectively, and for CD80 and CD73 activation markers. We demonstrated that immunization with MF59-, but not aluminum salt–adjuvanted HlaH35L, induced expanded Ag-specific CD73+CD80− GC B cells in proximal- and distal-draining lymph nodes, and promoted the persistence of GC B cells, detected up to 4 mo after immunization. In addition to increasing GC B cells, MF59-adjuvanted HlaH35L also increased the frequency of T follicular helper cells. This work extends previous knowledge regarding adaptive immune responses to MF59-adjuvanted vaccines, and, to our knowledge, for the first time an adjuvant used in human licensed products is shown to promote strong and persistent Ag-specific GC responses that might benefit the rational design of new vaccination strategies.


Journal of Innate Immunity | 2010

Intranasal Administration of CpG Induces a Rapid and Transient Cytokine Response Followed by Dendritic and Natural Killer Cell Activation and Recruitment in the Mouse Lung

Isabella Pesce; Elisabetta Monaci; Alessandro Muzzi; Elaine Tritto; Simona Tavarini; Sandra Nuti; E. De Gregorio; Andreas Wack

CpG-containing oligodeoxynucleotides are potent mucosal adjuvants and effective as stand-alone treatment of respiratory infections in mice. Although CpG is also used as a type 1 helper immunomodulator in the treatment of asthma and allergic disease, immune modulation following intranasal application has not been fully characterized yet. Using a B-type CpG, we monitored RNA expression profiles, cytokine production and cellular activation in lung tissue and bronchoalveolar lavages ex vivo and cytokine production of purified cell populations in vitro. CpG triggered the upregulation of many transcripts, including interferon response genes and proinflammatory cytokine genes, between 3 h and 4 days. Overlapping subsets of these cytokine proteins were induced in vitro in purified CD11c+ cells, B cells and alveolar macrophages from the lung, thus identifying these cells as direct targets of CpG. While lung B cells strongly respond to CpG in vitro, less activation is found ex vivo, suggesting efficient CpG sequestering or rapid B cell migration after activation. In contrast, a type II alveolar epithelial cell line did not respond to CpG in vitro. We noted selective recruitment of plasmacytoid dendritic cells (DCs) into the lung tissue, and of conventional DCs and natural killer (NK) cells into the lung tissue and bronchoalveolar space. Furthermore, CpG induced activation of intrapulmonary DCs, NK and T cells. We hypothesize that CpG-linked adjuvanticity and clearance of respiratory pathogens are mediated by two major mechanisms: transient induction of the interferon pathway limiting microbial survival and selective recruitment of DCs and NK cells, which allows for better adaptive responses.

Collaboration


Dive into the Elisabetta Monaci's collaboration.

Researchain Logo
Decentralizing Knowledge