Elizabeth A. Ottinger
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth A. Ottinger.
Current Topics in Medicinal Chemistry | 2014
Elizabeth A. Ottinger; Mark L. Kao; Nuria Carrillo-Carrasco; Nicole M. Yanjanin; Roopa Kanakatti Shankar; Marjo Janssen; Marcus E. Brewster; Ilona Scott; Xin Xu; Jim Cradock; Pramod Terse; Seameen Dehdashti; Juan J. Marugan; Wei Zheng; Lili Portilla; Alan Hubbs; William J. Pavan; John D. Heiss; Charles H. Vite; Steven U. Walkley; Daniel S. Ory; Steven A. Silber; Forbes D. Porter; Christopher P. Austin; John C. McKew
In 2010, the National Institutes of Health (NIH) established the Therapeutics for Rare and Neglected Diseases (TRND) program within the National Center for Advancing Translational Sciences (NCATS), which was created to stimulate drug discovery and development for rare and neglected tropical diseases through a collaborative model between the NIH, academic scientists, nonprofit organizations, and pharmaceutical and biotechnology companies. This paper describes one of the first TRND programs, the development of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) for the treatment of Niemann-Pick disease type C1 (NPC1). NPC is a neurodegenerative, autosomal recessive rare disease caused by a mutation in either the NPC1 (about 95% of cases) or the NPC2 gene (about 5% of cases). These mutations affect the intracellular trafficking of cholesterol and other lipids, which leads to a progressive accumulation of unesterified cholesterol and glycosphingolipids in the CNS and visceral organs. Affected individuals typically exhibit ataxia, swallowing problems, seizures, and progressive impairment of motor and intellectual function in early childhood, and usually die in adolescence. There is no disease modifying therapy currently approved for NPC1 in the US. A collaborative drug development program has been established between TRND, public and private partners that has completed the pre-clinical development of HP-β-CD through IND filing for the current Phase I clinical trial that is underway. Here we discuss how this collaborative effort helped to overcome scientific, clinical and financial challenges facing the development of new drug treatments for rare and neglected diseases, and how it will incentivize the commercialization of HP-β-CD for the benefit of the NPC patient community.
The Lancet | 2017
Daniel S. Ory; Elizabeth A. Ottinger; Nicole Y. Farhat; Kelly A. King; Xuntian Jiang; Lisa Weissfeld; Elizabeth Berry-Kravis; Cristin Davidson; Simona Bianconi; Lee Ann Keener; Ravichandran Rao; Ariane Soldatos; Rohini Sidhu; Kimberly A Walters; Xin Xu; Audrey Thurm; Beth Solomon; William J. Pavan; Bernardus N Machielse; Mark Kao; Steven A. Silber; John C. McKew; Carmen C. Brewer; Charles H. Vite; Steven U. Walkley; Christopher P. Austin; Forbes D. Porter
BACKGROUND Niemann-Pick disease, type C1 (NPC1) is a lysosomal storage disorder characterised by progressive neurodegeneration. In preclinical testing, 2-hydroxypropyl-β-cyclodextrins (HPβCD) significantly delayed cerebellar Purkinje cell loss, slowed progression of neurological manifestations, and increased lifespan in mouse and cat models of NPC1. The aim of this study was to assess the safety and efficacy of lumbar intrathecal HPβCD. METHODS In this open-label, dose-escalation phase 1-2a study, we gave monthly intrathecal HPβCD to participants with NPC1 with neurological manifestation at the National Institutes of Health (NIH), Bethesda, MD, USA. To explore the potential effect of 2-week dosing, three additional participants were enrolled in a parallel study at Rush University Medical Center (RUMC), Chicago, IL, USA. Participants from the NIH were non-randomly, sequentially assigned in cohorts of three to receive monthly initial intrathecal HPβCD at doses of 50, 200, 300, or 400 mg per month. A fifth cohort of two participants received initial doses of 900 mg. Participants from RUMC initially received 200 or 400 mg every 2 weeks. The dose was escalated based on tolerance or safety data from higher dose cohorts. Serum and CSF 24(S)-hydroxycholesterol (24[S]-HC), which serves as a biomarker of target engagement, and CSF protein biomarkers were evaluated. NPC Neurological Severity Scores (NNSS) were used to compare disease progression in HPβCD-treated participants relative to a historical comparison cohort of 21 NPC1 participants of similar age range. FINDINGS Between Sept 21, 2013, and Jan 19, 2015, 32 participants with NPC1 were assessed for eligibility at the National Institutes of Health. 18 patients were excluded due to inclusion criteria not met (six patients), declined to participate (three patients), pursued independent expanded access and obtained the drug outside of the study (three patients), enrolled in the RUMC cohort (one patient), or too late for the trial enrolment (five patients). 14 patients were enrolled and sequentially assigned to receive intrathecal HPβCD at a starting dose of 50 mg per month (three patients), 200 mg per month (three patients), 300 mg per month (three patients), 400 mg per month (three patients), or 900 mg per month (two patients). During the first year, two patients had treatment interrupted for one dose, based on grade 1 ototoxicity. All 14 patients were assessed at 12 months. Between 12 and 18 months, one participant had treatment interrupted at 17 months due to hepatocellular carcinoma, one patient had dose interruption for 2 doses based on caregiver hardship and one patient had treatment interrupted for 1 dose for mastoiditis. 11 patients were assessed at 18 months. Between Dec 11, 2013, and June 25, 2014, three participants were assessed for eligibility and enrolled at RUMC, and were assigned to receive intrathecal HPβCD at a starting dose of 200 mg every 2 weeks (two patients), or 400 mg every two weeks (one patient). There were no dropouts in this group and all 3 patients were assessed at 18 months. Biomarker studies were consistent with improved neuronal cholesterol homoeostasis and decreased neuronal pathology. Post-drug plasma 24(S)-HC area under the curve (AUC8-72) values, an indicator of neuronal cholesterol homoeostasis, were significantly higher than post-saline plasma 24(S)-HC AUC8-72 after doses of 900 mg (p=0·0063) and 1200 mg (p=0·0037). CSF 24(S)-HC concentrations in three participants given either 600 or 900 mg of HPβCD were increased about two fold (p=0·0032) after drug administration. No drug-related serious adverse events were observed. Mid-frequency to high-frequency hearing loss, an expected adverse event, was documented in all participants. When managed with hearing aids, this did not have an appreciable effect on daily communication. The NNSS for the 14 participants treated monthly increased at a rate of 1·22, SEM 0·34 points per year compared with 2·92, SEM 0·27 points per year (p=0·0002) for the 21 patient comparison group. Decreased progression was observed for NNSS domains of ambulation (p=0·0622), cognition (p=0·0040) and speech (p=0·0423). INTERPRETATION Patients with NPC1 treated with intrathecal HPβCD had slowed disease progression with an acceptable safety profile. These data support the initiation of a multinational, randomised, controlled trial of intrathecal HPβCD. FUNDING National Institutes of Health, Danas Angels Research Trust, Ara Parseghian Medical Research Foundation, Hope for Haley, Samanthas Search for the Cure Foundation, National Niemann-Pick Disease Foundation, Support of Accelerated Research for NPC Disease, Vtesse, Janssen Research and Development, a Johnson & Johnson company, and Johnson & Johnson.
Journal of Lipid Research | 2015
Rohini Sidhu; Hui-Hui Jiang; Nicole Y. Farhat; Nuria Carrillo-Carrasco; Myra Woolery; Elizabeth A. Ottinger; Forbes D. Porter; Jean E. Schaffer; Daniel S. Ory; Xuntian Jiang
24(S)-hydroxycholesterol [24(S)-HC] is a cholesterol metabolite that is formed almost exclusively in the brain. The concentrations of 24(S)-HC in cerebrospinal fluid (CSF) and/or plasma might be a sensitive marker of altered cholesterol metabolism in the CNS. A highly sensitive 2D-LC-MS/MS assay was developed for the quantification of 24(S)-HC in human plasma and CSF. In the development of an assay for 24(S)-HC in CSF, significant nonspecific binding of 24(S)-HC was observed and resolved with the addition of 2.5% 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) into CSF samples. The sample preparation consists of liquid-liquid extraction with methyl-tert-butyl ether and derivatization with nicotinic acid. Good linearity was observed in a range from 1 to 200 ng/ml and from 0.025 to 5 ng/ml, for plasma and CSF, respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. Stability of 24(S)-HC was reported under a variety of storage conditions. This method has been successfully applied to support a National Institutes of Health-sponsored clinical trial of HP-β-CD in Niemann-Pick type C1 patients, in which 24(S)-HC is used as a pharmacodynamic biomarker.
Human Molecular Genetics | 2014
Brett Tortelli; Hideji Fujiwara; Jessica H. Bagel; Jessie Zhang; Rohini Sidhu; Xuntian Jiang; Nicole M. Yanjanin; Roopa Kanakatti Shankar; Nuria Carillo-Carasco; John D. Heiss; Elizabeth A. Ottinger; Forbes D. Porter; Jean E. Schaffer; Charles H. Vite; Daniel S. Ory
Niemann-Pick C1 (NPC1) disease is a rare, neurodegenerative lysosomal cholesterol storage disorder, typified by progressive cognitive and motor function impairment. Affected individuals usually succumb to the disease in adolescence. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) has emerged as a promising intervention that reduces lipid storage and prolongs survival in NPC1 disease animal models. A barrier to the development of HP-β-CD and other treatments for NPC disease has been the lack of validated biochemical measures to evaluate efficacy. Here we explored whether cholesterol homeostatic responses resulting from HP-β-CD-mediated redistribution of sequestered lysosomal cholesterol could provide biomarkers to monitor treatment. Upon direct CNS delivery of HP-β-CD, we found increases in plasma 24(S)-HC in two independent NPC1 disease animal models, findings that were confirmed in human NPC1 subjects receiving HP-β-CD. Since circulating 24(S)-HC is almost exclusively CNS-derived, the increase in plasma 24(S)-HC provides a peripheral, non-invasive measure of the CNS effect of HP-β-CD. Our findings suggest that plasma 24(S)-HC, along with the other cholesterol-derived markers examined in this study, can serve as biomarkers that will accelerate development of therapeutics for NPC1 disease.
Journal of Lipid Research | 2014
Hui Jiang; Rohini Sidhu; Hideji Fujiwara; Marc De Meulder; Ronald de Vries; Yong Gong; Mark Kao; Forbes D. Porter; Nicole M. Yanjanin; Nuria Carillo-Carasco; Xin Xu; Elizabeth A. Ottinger; Myra Woolery; Daniel S. Ory; Xuntian Jiang
2-Hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used excipient for drug formulation, has emerged as an investigational new drug for the treatment of Niemann-Pick type C1 (NPC1) disease, a neurodegenerative cholesterol storage disorder. Development of a sensitive quantitative LC-MS/MS assay to monitor the pharmacokinetics (PKs) of HP-β-CD required for clinical trials has been challenging owing to the dispersity of the HP-β-CD. To support a phase 1 clinical trial for ICV delivery of HP-β-CD in NPC1 patients, novel methods for quantification of HP-β-CD in human plasma and cerebrospinal fluid (CSF) using LC-MS/MS were developed and validated: a 2D-LC-in-source fragmentation-MS/MS (2D-LC-IF-MS/MS) assay and a reversed phase ultra performance LC-MS/MS (RP-UPLC-MS/MS) assay. In both assays, protein precipitation and “dilute and shoot” procedures were used to process plasma and CSF, respectively. The assays were fully validated and in close agreement, and allowed determination of PK parameters for HP-β-CD. The LC-MS/MS methods are ∼100-fold more sensitive than the current HPLC assay, and were successfully employed to analyze HP-β-CD in human plasma and CSF samples to support the phase 1 clinical trial of HP-β-CD in NPC1 patients.
Annals of the New York Academy of Sciences | 2016
Miao Xu; Omid Motabar; Marc Ferrer; Juan J. Marugan; Wei Zheng; Elizabeth A. Ottinger
Lysosomal storage diseases (LSDs) are a group of rare diseases in which the function of the lysosome is disrupted by the accumulation of macromolecules. The complexity underlying the pathogenesis of LSDs and the small, often pediatric, population of patients make the development of therapies for these diseases challenging. Current treatments are only available for a small subset of LSDs and have not been effective at treating neurological symptoms. Disease‐relevant cellular and animal models with high clinical predictability are critical for the discovery and development of new treatments for LSDs. In this paper, we review how LSD patient primary cells and induced pluripotent stem cell–derived cellular models are providing novel assay systems in which phenotypes are more similar to those of the human LSD physiology. Furthermore, larger animal disease models are providing additional tools for evaluation of the efficacy of drug candidates. Early predictors of efficacy and better understanding of disease biology can significantly affect the translational process by focusing efforts on those therapies with the higher probability of success, thus decreasing overall time and cost spent in clinical development and increasing the overall positive outcomes in clinical trials.
Orphanet Journal of Rare Diseases | 2016
Steven U. Walkley; Cristin Davidson; Jonathan Jacoby; Philip Marella; Elizabeth A. Ottinger; Christopher P. Austin; Forbes D. Porter; Charles H. Vite; Daniel S. Ory
Rare disease represents one of the most significant issues facing the medical community and health care providers worldwide, yet the majority of these disorders never emerge from their obscurity, drawing little attention from the medical community or the pharmaceutical industry. The challenge therefore is how best to mobilize rare disease stakeholders to enhance basic, translational and clinical research to advance understanding of pathogenesis and accelerate therapy development. Here we describe a rare, fatal brain disorder known as Niemann-Pick type C (NPC) and an innovative research collaborative known as Support of Accelerated Research for NPC (SOAR-NPC) which illustrates one pathway through which knowledge of a rare disease and its possible treatments are being successfully advanced. Use of the “SOAR” mechanism, we believe, offers a blueprint for similar advancement for many other rare disorders.
Orphanet Journal of Rare Diseases | 2018
Ni Sima; Rong Li; Wei Huang; Miao Xu; Jeanette Beers; Jizhong Zou; Steven A. Titus; Elizabeth A. Ottinger; Juan J. Marugan; Xing Xie; Wei Zheng
BackgroundInfantile and late infantile neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage diseases affecting the central nervous system (CNS). The infantile NCL (INCL) is caused by mutations in the PPT1 gene and late-infantile NCL (LINCL) is due to mutations in the TPP1 gene. Deficiency in PPT1 or TPP1 enzyme function results in lysosomal accumulation of pathological lipofuscin-like material in the patient cells. There is currently no small-molecular drug treatment for NCLs.ResultsWe have generated induced pluripotent stem cells (iPSC) from three patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). Using these new disease models, we evaluated the effect of δ-tocopherol (DT) and hydroxypropyl-β-cyclodextrin (HPBCD) with the enzyme replacement therapy as the control. Treatment with the relevant recombinant enzyme or DT significantly ameliorated the lipid accumulation and lysosomal enlargement in the disease cells. A combination therapy of δ-tocopherol and HPBCD further improved the effect compared to that of either drug used as a single therapy.ConclusionThe results demonstrate that these patient iPSC derived NCL NSCs are valid cell- based disease models with characteristic disease phenotypes that can be used for study of disease pathophysiology and drug development.
Biochimica et Biophysica Acta | 2018
Sharie J. Haugabook; Marc Ferrer; Elizabeth A. Ottinger
A challenge in developing effective treatments is the modeling of the human disease using in vitro and in vivo systems. Animal models have played a critical role in the understanding of disease pathophysiology, target validation, and evaluation of novel therapeutic agents. However, as the success rate from entry into clinical testing to drug approval remains low, it is critical to have high quality and well-validated models reflective of the disease condition. Additional experimental models are being developed based on functional in vitro 3D tissue models such as organoids and 3D bioprinted tissues. Because these 3D tissue models mimic closer the architecture, cell composition and physiology of native tissues, they are now being used as screening platforms in drug discovery and development and for tissue transplant in regenerative medicine. Here we review the current state-of-art of in vitro and in vivo translational models for the development of therapies for rare diseases of the liver.
Molecular Genetics and Metabolism | 2016
Forbes D. Porter; Nicole Y. Farhat; Elizabeth A. Ottinger; John C. McKew; Lisa Weissfeld; Ben Machielse; Elizabeth M. Berry-Kavis; Charles H. Vite; Steven U. Walkley; Daniel S. Ory