Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Cosgriff-Hernandez is active.

Publication


Featured researches published by Elizabeth Cosgriff-Hernandez.


ACS Nano | 2015

Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach

Janet R. Xavier; Teena Thakur; Prachi Desai; Manish K. Jaiswal; Nick Sears; Elizabeth Cosgriff-Hernandez; Roland Kaunas; Akhilesh K. Gaharwar

Despite bones impressive ability to heal after traumatic injuries and fractures, a significant need still exists for developing strategies to promote healing of nonunion defects. To address this issue, we developed collagen-based hydrogels containing two-dimensional nanosilicates. Nanosilicates are ultrathin nanomaterials with a high degree of anisotropy and functionality that results in enhanced surface interactions with biological entities compared to their respective three-dimensional counterparts. The addition of nanosilicates resulted in a 4-fold increase in compressive modulus along with an increase in pore size compared to collagen-based hydrogels. In vitro evaluation indicated that the nanocomposite hydrogels are capable of promoting osteogenesis in the absence of any osteoinductive factors. A 3-fold increase in alkaline phosphatase activity and a 4-fold increase in the formation of a mineralized matrix were observed with the addition of the nanosilicates to the collagen-based hydrogels. Overall, these results demonstrate the multiple functions of nanosilicates conducive to the regeneration of bone in nonunion defects, including increased network stiffness and porosity, injectability, and enhanced mineralized matrix formation in a growth-factor-free microenvironment.


Acta Biomaterialia | 2012

Multilayer vascular grafts based on collagen-mimetic proteins.

Mary Beth Browning; D. Dempsey; V. Guiza; S. Becerra; J. Rivera; Brooke H. Russell; Magnus Höök; Fred J. Clubb; Matthew W. Miller; Theresa W. Fossum; J.F. Dong; A.L. Bergeron; Mariah S. Hahn; Elizabeth Cosgriff-Hernandez

A major roadblock in the development of an off-the-shelf, small-caliber vascular graft is achieving rapid endothelialization of the conduit while minimizing the risk of thrombosis, intimal hyperplasia, and mechanical failure. To address this need, a collagen-mimetic protein derived from group A Streptococcus, Scl2.28 (Scl2), was conjugated into a poly(ethylene glycol) (PEG) hydrogel to generate bioactive hydrogels that bind to endothelial cells (ECs) and resist platelet adhesion. The PEG-Scl2 hydrogel was then reinforced with an electrospun polyurethane mesh to achieve suitable biomechanical properties. In the current study, initial evaluation of this multilayer design as a potential off-the-shelf graft was conducted. First, electrospinning parameters were varied to achieve composite burst pressure, compliance, and suture retention strength that matched reported values of saphenous vein autografts. Composite stability following drying, sterilization, and physiological conditioning under pulsatile flow was then demonstrated. Scl2 bioactivity was also maintained after drying and sterilization as indicated by EC adhesion and spreading. Evaluation of platelet adhesion, aggregation, and activation indicated that PEG-Scl2 hydrogels had minimal platelet interactions and thus appear to provide a thromboresistant blood contacting layer. Finally, evaluation of EC migration speed demonstrated that PEG-Scl2 hydrogels promoted higher migration speeds than PEG-collagen analogs and that migration speed was readily tuned by altering protein concentration. Collectively, these results indicate that this multilayer design warrants further investigation and may have the potential to improve on current synthetic options.


Biomacromolecules | 2011

Injectable PolyHIPEs as High Porosity Bone Grafts

Robert S. Moglia; Jennifer L. Holm; Nicholas Sears; Caitlin J. Wilson; Dawn M. Harrison; Elizabeth Cosgriff-Hernandez

Polymerization of high internal phase emulsions (polyHIPEs) is a relatively new method for the production of high-porosity scaffolds. The tunable architecture of these polyHIPE foams makes them attractive candidates for tissue engineered bone grafts. Previously studied polyHIPE systems require either toxic diluents or high cure temperatures which prohibit their use as an injectable bone graft. In contrast, we have developed an injectable polyHIPE that cures at physiological temperatures to a rigid, high-porosity foam. First, a biodegradable macromer, propylene fumarate dimethacrylate (PFDMA), was synthesized that has appropriate viscosity and hydrophobicity for emulsification. The process of surfactant selection is detailed with particular focus on the key structural features of both polymer (logP values, hydrogen bond acceptor sites) and surfactant (HLB values, hydrogen bond donor sites) that enable stable HIPE formation. Incubation of HIPEs at 37 °C was used to initiate radical cross-linking of the unsaturated double bond of the methacrylate groups to polymerize the continuous phase and lock in the emulsion geometry. The resulting polyHIPEs exhibited ~75% porosity, pore sizes ranging from 4 to 29 μm, and an average compressive modulus and strength of 33 and 5 MPa, respectively. These findings highlight the great potential of these scaffolds as injectable, tissue engineered bone grafts.


Tissue Engineering Part B-reviews | 2016

A Review of Three-Dimensional Printing in Tissue Engineering.

Nick Sears; Dhruv Seshadri; Prachi S. Dhavalikar; Elizabeth Cosgriff-Hernandez

Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed.


Journal of Biomedical Materials Research Part A | 2014

Determination of the in vivo degradation mechanism of PEGDA hydrogels

Mary Beth Browning; Stacy Cereceres; P.T. Luong; Elizabeth Cosgriff-Hernandez

Poly(ethylene glycol) (PEG) hydrogels are one of the most extensively utilized biomaterials systems due to their established biocompatibility and highly tunable properties. It is widely acknowledged that traditional acrylate-derivatized PEG (PEGDA) hydrogels are susceptible to slow degradation in vivo and are therefore unsuitable for long-term implantable applications. However, there is speculation whether the observed degradation is due to hydrolysis of endgroup acrylate esters or oxidation of the ether backbone, both of which are possible in the foreign body response to implanted devices. PEG diacrylamide (PEGDAA) is a polyether-based hydrogel system with similar properties to PEGDA but with amide linkages in place of the acrylate esters. This provides a hydrolytically-stable control that can be used to isolate the relative contributions of hydrolysis and oxidation to the in vivo degradation of PEGDA. Here we show that PEGDAA hydrogels remained stable over 12 weeks of subcutaneous implantation in a rat model while PEGDA hydrogels underwent significant degradation as indicated by both increased swelling ratio and decreased modulus. As PEGDA and PEGDAA have similar susceptibility to oxidation, these results demonstrate for the first time that the primary in vivo degradation mechanism of PEGDA is hydrolysis of the endgroup acrylate esters. Additionally, the maintenance of PEGDAA hydrogel properties in vivo indicates their suitability for long-term implants. These studies serve to elucidate key information about a widely used biomaterial system to allow for better implantable device design and to provide a biostable replacement option for PEGDA in applications that require long-term stability.


Biomacromolecules | 2012

Development of a Biostable Replacement for PEGDA Hydrogels

Mary Beth Browning; Elizabeth Cosgriff-Hernandez

The exceptional tunability of poly(ethylene glycol) (PEG) hydrogel chemical, mechanical, and biological properties enables their successful use in a wide range of biomedical applications. Although PEG diacrylate (PEGDA) hydrogels are often used as nondegradable controls in short-term in vitro studies, it is widely acknowledged that the hydrolytically labile esters formed upon acrylation of the PEG diol make them susceptible to slow degradation in vivo. A PEG hydrogel system that maintains the desirable properties of PEGDA while improving biostability would be valuable in preventing degradation-related failure of gel-based devices in long-term in vivo applications. To this end, PEG diacrylamide (PEGDAA) hydrogels were synthesized and characterized in quantitative comparison to traditional PEGDA hydrogels. It was found that PEGDAA hydrogel modulus and swelling can be tuned over a similar range and to comparable degrees as PEGDA hydrogels with changes in macromer molecular weight and concentration. Additionally, PEGDAA cytocompatibility, low cell adhesion, and capacity for incorporation of bioactivity were analogous to that of PEGDA. In vitro hydrolytic degradation studies showed that the amide-based PEGDAA had significantly increased biostability relative to PEGDA. Overall, these findings indicate that PEGDAA hydrogels are a suitable replacement for PEGDA hydrogels with enhanced hydrolytic resistance. In addition, these studies provide a quantitative measure of the hydrolytic degradation rate of PEGDA hydrogels which was previously lacking in the literature.


Journal of Biomedical Materials Research Part A | 2011

Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size

Mary Beth Browning; T. Wilems; Mariah S. Hahn; Elizabeth Cosgriff-Hernandez

Poly(ethylene glycol) (PEG) hydrogels are of great interest in tissue engineering because of their established biocompatibility, high permeability, and tunable material properties. However, rational design of PEG hydrogel scaffold properties has been inhibited by the interdependence of key material properties such as modulus and mesh size. This study examined the effect of an acrylated 4-arm PEG cross-linker on gel modulus and mesh size as a means of inducing local increases in cross-link density to decouple these two parameters. It was determined that adding the 4-arm PEG cross-linker to PEG hydrogels resulted in statistically significant increases in both tensile and compressive modulus while having minimal effects on overall gel mesh size. The incorporation of the 4-arm PEG cross-linker also broadened the range of achievable mechanical properties. This study provides the methodology to independently tune PEG hydrogel modulus and mesh size, which may be utilized in future investigations of the individual and combined effects of PEG hydrogel modulus and mesh size on cell behavior and viability. It also presents a more finely tunable hydrogel scaffold with utility in a broad range of tissue engineering applications.


Journal of Biomedical Materials Research Part B | 2015

Electrospun vascular grafts with improved compliance matching to native vessels.

Roya M. Nezarati; Michelle B. Eifert; David K. Dempsey; Elizabeth Cosgriff-Hernandez

Coronary artery bypass grafting is one of the most commonly performed major surgeries in the United States. Autologous vessels such as the saphenous vein are the current gold standard for treatment; however, synthetic vascular prostheses made of expanded poly(tetrafluoroethylene) or poly(ethylene terephthalate) are used when autologous vessels are unavailable. These synthetic grafts have a high failure rate in small diameter (<4 mm) applications due to rapid reocclusion via intimal hyperplasia. Current strategies to improve clinical performance are focused on preventing intimal hyperplasia by fabricating grafts with compliance and burst pressure similar to native vessels. To this end, we have developed an electrospun vascular graft from segmented polyurethanes with tunable properties by altering material chemistry and graft microarchitecture. Relationships between polyurethane tensile properties and biomechanical properties were elucidated to select polymers with desirable properties. Graft thickness, fiber tortuosity, and fiber fusions were modulated to provide additional tools for controlling graft properties. Using a combination of these strategies, a vascular graft with compliance and burst pressure exceeding the saphenous vein autograft was fabricated (compliance = 6.0 ± 0.6%/mmHg × 10(-4) , burst pressure = 2260 ± 160 mmHg). This graft is hypothesized to reduce intimal hyperplasia associated with low compliance in synthetic grafts and improve long-term clinical success. Additionally, the fundamental relationships between electrospun mesh microarchitecture and mechanical properties identified in this work can be utilized in various biomedical applications.


Journal of Biomedical Materials Research Part B | 2015

Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing

Ajay Padsalgikar; Elizabeth Cosgriff-Hernandez; Genevieve Gallagher; Tyler Touchet; Ciprian Iacob; Lisa Mellin; Anna Norlin-Weissenrieder; James Runt

Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials.


Biomacromolecules | 2013

Bioactive hydrogels with enhanced initial and sustained cell interactions

Mary Beth Browning; Brooke H. Russell; José Rivera; Magnus Höök; Elizabeth Cosgriff-Hernandez

The highly tunable properties of poly(ethylene glycol) (PEG)-based hydrogel systems permit their use in a wide array of regenerative medicine and drug delivery applications. One of the most valuable properties of PEG hydrogels is their intrinsic resistance to protein adsorption and cell adhesion, as it allows for a controlled introduction of desired bioactive factors including proteins, peptides, and drugs. Acrylate-PEG-N-hydroxysuccinimide (Acr-PEG-NHS) is widely utilized as a PEG linker to functionalize bioactive factors with photo-cross-linkable groups. This enables their facile incorporation into PEG hydrogel networks or the use of PEGylation strategies for drug delivery. However, PEG linkers can sterically block integrin binding sites on functionalized proteins and reduce cell-material interactions. In this study we demonstrate that reducing the density of PEG linkers on protein backbones during functionalization results in significantly improved cell adhesion and spreading to bioactive hydrogels. However, this reduction in functionalization density also increases protein loss from the matrix over time due to ester hydrolysis of the Acr-PEG-NHS linkers. To address this, a novel PEG linker, acrylamide-PEG-isocyanate (Aam-PEG-I), with enhanced hydrolytic stability was synthesized. It was found that decreasing functionalization density with Aam-PEG-I resulted in comparable increases in cell adhesion and spreading to Acr-PEG-NHS systems while maintaining protein and bioactivity levels within the hydrogel network over a significantly longer time frame. Thus, Aam-PEG-I provides a new option for protein functionalization for use in a wide range of applications that improves initial and sustained cell-material interactions to enhance control of bioactivity.

Collaboration


Dive into the Elizabeth Cosgriff-Hernandez's collaboration.

Researchain Logo
Decentralizing Knowledge