Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariah S. Hahn is active.

Publication


Featured researches published by Mariah S. Hahn.


Biomacromolecules | 2010

Photo-cross-linked PDMSstar-PEG hydrogels: synthesis, characterization, and potential application for tissue engineering scaffolds.

Yaping Hou; Cody A. Schoener; Katherine R. Regan; Dany J. Munoz-Pinto; Mariah S. Hahn; Melissa A. Grunlan

Inorganic-organic hydrogels with tunable chemical and physical properties were prepared from methacrylated star polydimethylsiloxane (PDMS(star)-MA) and diacrylated poly(ethylene glycol) (PEG-DA) for use as tissue engineering scaffolds. A total of 18 compositionally unique hydrogels were prepared by photo-cross-linking, varying weight ratios of PEG-DA and PDMS(star)-MA of different molecular weights (M(n)): PEG-DA (M(n) = 3.4k and 6k g/mol) and PDMS(star)-MA (M(n) = 1.8k, 5k, and 7k g/mol). Introduction of PDMS(star)-MA caused formation of discrete PDMS-enriched microparticles dispersed within the PEG matrix. The swelling ratio, mechanical properties in tension and compression, nonspecific protein adhesion, controlled introduction of bioactivity, and cytotoxicity of hydrogels were studied. This library of inorganic-organic hydrogels with tunable properties provides a useful platform to study the effect of scaffold properties on cell behavior.


Acta Biomaterialia | 2012

Multilayer vascular grafts based on collagen-mimetic proteins.

Mary Beth Browning; D. Dempsey; V. Guiza; S. Becerra; J. Rivera; Brooke H. Russell; Magnus Höök; Fred J. Clubb; Matthew W. Miller; Theresa W. Fossum; J.F. Dong; A.L. Bergeron; Mariah S. Hahn; Elizabeth Cosgriff-Hernandez

A major roadblock in the development of an off-the-shelf, small-caliber vascular graft is achieving rapid endothelialization of the conduit while minimizing the risk of thrombosis, intimal hyperplasia, and mechanical failure. To address this need, a collagen-mimetic protein derived from group A Streptococcus, Scl2.28 (Scl2), was conjugated into a poly(ethylene glycol) (PEG) hydrogel to generate bioactive hydrogels that bind to endothelial cells (ECs) and resist platelet adhesion. The PEG-Scl2 hydrogel was then reinforced with an electrospun polyurethane mesh to achieve suitable biomechanical properties. In the current study, initial evaluation of this multilayer design as a potential off-the-shelf graft was conducted. First, electrospinning parameters were varied to achieve composite burst pressure, compliance, and suture retention strength that matched reported values of saphenous vein autografts. Composite stability following drying, sterilization, and physiological conditioning under pulsatile flow was then demonstrated. Scl2 bioactivity was also maintained after drying and sterilization as indicated by EC adhesion and spreading. Evaluation of platelet adhesion, aggregation, and activation indicated that PEG-Scl2 hydrogels had minimal platelet interactions and thus appear to provide a thromboresistant blood contacting layer. Finally, evaluation of EC migration speed demonstrated that PEG-Scl2 hydrogels promoted higher migration speeds than PEG-collagen analogs and that migration speed was readily tuned by altering protein concentration. Collectively, these results indicate that this multilayer design warrants further investigation and may have the potential to improve on current synthetic options.


Acta Biomaterialia | 2008

Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype.

Huimin Liao; Dany J. Munoz-Pinto; Xin Qu; Yaping Hou; Melissa A. Grunlan; Mariah S. Hahn

Current clinical management of vocal fold (VF) scarring produces inconsistent and often suboptimal results. Researchers are investigating a number of alternative treatments for VF lamina propria (LP) scarring, including designer implant materials for functional LP regeneration. In the present study, we investigate the effects of the initial scaffold elastic modulus and mesh size on encapsulated VF fibroblast (VFF) extracellular matrix (ECM) production toward rational scaffold design. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were selected for this study since their material properties, including mechanical properties, mesh size, degradation rate and bioactivity, can be tightly controlled and systematically modified. Porcine VFF were encapsulated in four PEGDA hydrogels with degradation half lives of approximately 25 days, but with initial elastic compressive moduli and mesh sizes ranging from approximately 30 to 100kPa and from approximately 9 to 27nm, respectively. After 30 days of static culture, VFF ECM production and phenotype in each formulation was assessed biochemically and histologically. Sulfated glycosaminoglycan synthesis increased in similar degree with both increasing initial modulus and decreasing initial mesh size. In contrast, elastin production decreased with increasing initial modulus but increased with decreasing initial mesh size. Both collagen deposition and the induction of a myofibroblastic phenotype depended strongly on initial mesh size but appeared largely unaffected by variations in initial modulus. The present results indicate that scaffold mesh size warrants further investigation as a critical regulator of VFF ECM synthesis. Furthermore, this study validates a systematic and controlled approach for analyzing VFF response to scaffold properties, which should aid in rational scaffold selection/design.


Acta Biomaterialia | 2012

A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys.

Rebecca E. McMahon; Ji Ma; Stanislav V. Verkhoturov; Dany J. Munoz-Pinto; I. Karaman; F. Rubitschek; H.J. Maier; Mariah S. Hahn

Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications.


Tissue Engineering Part A | 2009

Impact of Endothelial Cells and Mechanical Conditioning on Smooth Muscle Cell Extracellular Matrix Production and Differentiation

Allen S. Bulick; Dany J. Munoz-Pinto; Xin Qu; Mousami Mani; Deissy Cristancho; Matthew Urban; Mariah S. Hahn

The aim of the current study was to explore the separate and coupled effects of endothelial cell (EC) presence and mechanical conditioning on smooth muscle cell (SMC) responses by combining bilayered poly(ethylene glycol) diacrylate (PEGDA) hydrogels with a pulsatile flow bioreactor. Each construct was composed of an outer PEGDA layer containing SMC and an inner PEGDA layer, either with or without EC. After an initial 3 days of static culture, EC(+) and EC(-) constructs were each further divided into two subgroups, half of which received mechanical conditioning mimetic of late gestation (mean pressures of approximately 50 mmHg and peak-to-trough pressure differentials of approximately 20 mmHg at approximately 140-180 beats/min) and half of which were cultured statically. After 18 additional days of culture, the SMC-containing layer of each construct was harvested, and western blots and quantitative histology were conducted to compare collagen type I, collagen type III, and elastin levels among treatment groups. SMC differentiation was evaluated by focusing on SMC marker calponin h1 and direct regulators of its gene expression-the transcription factor serum response factor (SRF) and two of its binding partners, myocardin and Elk-1. Combined EC and pulsatile flow conditioning increased elastin production, but decreased collagen type I deposition. Further, combined EC presence and mechanical stimulation increased SRF levels and the ratio of myocardin to active, phosphorylated Elk-1. This modulation of SRF and its binding partners appeared to result in a net increase in SMC differentiation, as evidenced by an associated increase in calponin h1 levels.


Journal of Biomedical Materials Research Part A | 2011

Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size

Mary Beth Browning; T. Wilems; Mariah S. Hahn; Elizabeth Cosgriff-Hernandez

Poly(ethylene glycol) (PEG) hydrogels are of great interest in tissue engineering because of their established biocompatibility, high permeability, and tunable material properties. However, rational design of PEG hydrogel scaffold properties has been inhibited by the interdependence of key material properties such as modulus and mesh size. This study examined the effect of an acrylated 4-arm PEG cross-linker on gel modulus and mesh size as a means of inducing local increases in cross-link density to decouple these two parameters. It was determined that adding the 4-arm PEG cross-linker to PEG hydrogels resulted in statistically significant increases in both tensile and compressive modulus while having minimal effects on overall gel mesh size. The incorporation of the 4-arm PEG cross-linker also broadened the range of achievable mechanical properties. This study provides the methodology to independently tune PEG hydrogel modulus and mesh size, which may be utilized in future investigations of the individual and combined effects of PEG hydrogel modulus and mesh size on cell behavior and viability. It also presents a more finely tunable hydrogel scaffold with utility in a broad range of tissue engineering applications.


Biomaterials | 2015

Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering.

Dany J. Munoz-Pinto; Andrea Carolina Jimenez-Vergara; Tanmay Gharat; Mariah S. Hahn

Collagen hydrogels have been widely investigated as scaffolds for vascular tissue engineering due in part to the capacity of collagen to promote robust cell adhesion and elongation. However, collagen hydrogels display relatively low stiffness and strength, are thrombogenic, and are highly susceptible to cell-mediated contraction. In the current work, we develop and characterize a sequentially-formed interpenetrating network (IPN) that retains the benefits of collagen, but which displays enhanced mechanical stiffness and strength, improved thromboresistance, high physical stability and resistance to contraction. In this strategy, we first form a collagen hydrogel, infuse this hydrogel with poly(ethylene glycol) diacrylate (PEGDA), and subsequently crosslink the PEGDA by exposure to longwave UV light. These collagen-PEGDA IPNs allow for cell encapsulation during the fabrication process with greater than 90% cell viability via inclusion of cells within the collagen hydrogel precursor solution. Furthermore, the degree of cell spreading within the IPNs can be tuned from rounded to fully elongated by varying the time delay between the formation of the cell-laden collagen hydrogel and the formation of the PEGDA network. We also demonstrate that these collagen-PEGDA IPNs are able to support the initial stages of smooth muscle cell lineage progression by elongated human mesenchymal stems cells.


Biotechnology and Bioengineering | 2009

Probing vocal fold fibroblast response to hyaluronan in 3D contexts

Dany J. Munoz-Pinto; Andrea Carolina Jimenez-Vergara; L. Marcela Gelves; Rebecca E. McMahon; Viviana Guiza-Arguello; Mariah S. Hahn

A number of treatments are being investigated for vocal fold (VF) scar, including designer implants. The aim of the present study was to validate a 3D model system for probing the effects of various bioactive moieties on VF fibroblast (VFF) behavior toward rational implant design. We selected poly(ethylene glycol) diacrylate (PEGDA) hydrogels as our base‐scaffold due to their broadly tunable material properties. However, since cells encapsulated in PEGDA hydrogels are generally forced to take on rounded/stellate morphologies, validation of PEGDA gels as a 3D VFF model system required that the present work directly parallel previous studies involving more permissive scaffolds. We therefore chose to focus on hyaluronan (HA), a polysaccharide that has been a particular focus of the VF community. Toward this end, porcine VFFs were encapsulated in PEGDA hydrogels containing consistent levels of high M w HA (


Annals of Otology, Rhinology, and Laryngology | 2008

Glycosaminoglycan composition of the vocal fold lamina propria in relation to function.

Mariah S. Hahn; Cindy Y. Jao; William C. Faquin; K. Jane Grande-Allen

{\rm HA}_{{\rm H}{M}_{\rm W} }


Acta Biomaterialia | 2012

Influence of select extracellular matrix proteins on mesenchymal stem cell osteogenic commitment in three-dimensional contexts.

Silvia Becerra-Bayona; Viviana Guiza-Arguello; Xin Qu; Dany J. Munoz-Pinto; Mariah S. Hahn

), intermediate Mw HA (

Collaboration


Dive into the Mariah S. Hahn's collaboration.

Top Co-Authors

Avatar

Josh D. Erndt-Marino

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Patricia Diaz-Rodriguez

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satyavrata Samavedi

Rensselaer Polytechnic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge