Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth M. Rohlfs is active.

Publication


Featured researches published by Elizabeth M. Rohlfs.


Genetics in Medicine | 2004

Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel

Michael S. Watson; Garry R. Cutting; Robert J. Desnick; Deborah A. Driscoll; Katherine W. Klinger; Michael T. Mennuti; Glenn E. Palomaki; Bradley W. Popovich; Victoria M. Pratt; Elizabeth M. Rohlfs; Charles M. Strom; C. Sue Richards; David R. Witt; Wayne W. Grody

Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel


Journal of Medical Genetics | 2009

Differences in SMN1 allele frequencies among ethnic groups within North America

Brant Hendrickson; Colin Donohoe; Viatcheslav R. Akmaev; Elaine A Sugarman; Paul Labrousse; Leonid Boguslavskiy; Kerry Flynn; Elizabeth M. Rohlfs; Andrew M. Walker; Bernice A Allitto; Christopher Sears; Thomas Scholl

Background: Spinal muscular atrophy (SMA) is the most common inherited lethal disease of children. Various genetic deletions involving the bi-allelic loss of SMN1 exon 7 are reported to account for 94% of affected individuals. Published literature places the carrier frequency for SMN1 mutations between 1 in 25 and 1 in 50 in the general population. Although SMA is considered to be a pan-ethnic disease, carrier frequencies for many ethnicities, including most ethnic groups in North America, are unknown. Objectives and methods: To provide an accurate assessment of SMN1 mutation carrier frequencies in African American, Ashkenazi Jewish, Asian, Caucasian, and Hispanic populations, more than 1000 specimens in each ethnic group were tested using a clinically validated, quantitative real-time polymerase chain reaction (PCR) assay that measures exon 7 copy number. Results: The observed one-copy genotype frequency was 1 in 37 (2.7%) in Caucasian, 1 in 46 (2.2%) in Ashkenazi Jew, 1 in 56 (1.8%) in Asian, 1 in 91 (1.1%) in African American, and 1 in 125 (0.8%) in Hispanic specimens. Additionally, an unusually high frequency of alleles with multiple copies of SMN1 was identified in the African American group (27% compared to 3.3–8.1%). This latter finding has clinical implications for providing accurate adjusted genetic risk assessments to the African American population. Conclusions: Differences in the frequency of SMA carriers were significant among several ethnic groups. This study provides an accurate assessment of allele frequencies and estimates of adjusted genetic risk that were previously unavailable to clinicians and patients considering testing.


Genetics in Medicine | 2002

The I148T CFTR allele occurs on multiple haplotypes: A complex allele is associated with cystic fibrosis

Elizabeth M. Rohlfs; Zhaoqing Zhou; Elaine A Sugarman; Ruth A. Heim; Rhonda G. Pace; Lawrence M. Silverman; Bernice A Allitto

Purpose: To determine whether CFTR intragenic changes modulate the cystic fibrosis (CF) phenotype in individuals who are positive for the I148T allele.Methods: The CFTR genes from individuals who carried at least one copy of the I148T allele were analyzed for additional changes that may be acting as genetic modifiers.Results: Seven of eight individuals with a known or suspected diagnosis of CF who carried I148T in combination with a severe CF mutation also carried 3199del6. Eight apparently healthy adult individuals who were compound heterozygous for I148T and a severe CF mutation or homozygous for I148T did not carry the deletion (P = 0.0014). The I148T allele occurs on at least three haplotypes: an IVS-8 9T background, a 7T background, or a 9T + 3199del6 background. The 3199del6 allele was not identified in 386 non-CF chromosomes.Conclusions: It is concluded that I148T occurs on at least three haplotypes and the complex allele I148T + 9T + 3199del6 is associated with a classic CF phenotype.


Obstetrics & Gynecology | 2008

Prevalence and instability of fragile X alleles: implications for offering fragile X prenatal diagnosis.

Amy Cronister; Jennifer Teicher; Elizabeth M. Rohlfs; Alan E. Donnenfeld; Stephanie Hallam

OBJECTIVE: To document fragile X allele frequencies in a national referral population and evaluate CGG repeat expansion in mother-offspring transmissions. METHODS: Fragile X DNA analysis by Southern blot and polymerase chain reaction was completed for 14,675 women, aged 18 years or older, and 238 mother-offspring pairs between January 1999 and June 2004. Carrier frequencies were compared between groups referred for different clinical indications. Direct comparison of the FMR1 gene CGG repeat size in mother-offspring pairs determined intermediate and premutation allele stability. RESULTS: Intermediate fragile X alleles (45–54 CGG repeats) occurred in 257 (1 in 57). The combined total number of patients with a premutation (55–200 CGG repeats) or full mutation (more than 200 CGG repeats) numbered 208 (1 in 71). One in 3.5 women with a family history of fragile X and 1 in 10 with premature ovarian failure had a FMR1 mutation. This compared with 1 in 86 for those with a family history of mental retardation and 1 in 257 for women with no known risk factors for fragile X. Among 238 mother-offspring pairings, the smallest allele to expand to a full mutation in one generation contained 60 CGG repeats. Although 6.6% (4 of 60) of intermediate repeat alleles did expand, none jumped to a clinically significant full mutation–sized allele. CONCLUSION: Based on these data and other published literature, offering invasive prenatal diagnosis for fragile X syndrome is not indicated for women with intermediate alleles. Invasive prenatal diagnosis is warranted for those women with a fragile X allele containing 55 or more CGG repeats. LEVEL OF EVIDENCE: III


American Journal of Medical Genetics Part A | 2003

Analysis of cystic fibrosis transmembrane conductance regulator gene mutations in patients with congenital absence of the uterus and vagina.

Lorna Timmreck; Mark R. Gray; Barbara Handelin; Bernice Allito; Elizabeth M. Rohlfs; Ann Davis; Gita P. Gidwani; Richard H. Reindollar

The relationship between cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations and congenital absence of the uterus and vagina (CAUV) was examined. CFTR mutations have previously been associated with congenital bilateral absence of the vas deferens (CBAVD). CBAVD is caused by a disruption in the vas deferens, a Wolffian duct derivative. Because the embryologic development of the Müllerian ducts directly depends on the prior normal development of the Wolffian ducts, the same gene products may be necessary for normal embryologic development of both ductal systems. This study evaluated the role of CFTR mutations in the development of CAUV. DNA samples from 25 patients with CAUV were tested for the presence of 33 of the most common CFTR mutations. Protein‐coding DNA fragments from the CFTR gene were amplified in vitro by the polymerase chain reaction (PCR) and analyzed for mutations using allele‐specific oligonucleotide (ASO) probes. Two patients were heterozygous for CFTR mutations. One was heterozygous for the W1282X mutation and the other was heterozygous for the ΔF508 mutation. The incidence of the 33 CFTR mutations found in the patients with CAUV (8%) was twice that found in the general population (4%), but much less than the incidence of CFTR mutations in men with CBAVD (80%). This data suggests that it is unlikely for CFTR mutations to cause CAUV in females as they cause CBAVD in some males. Furthermore, the data suggest that CAUV in females may be the same disorder as CBAVD in males who do not have CFTR mutations.


Genetics in Medicine | 2005

Developing a sustainable process to provide quality control materials for genetic testing

Bin Chen; Catherine D. O'Connell; D. Joe Boone; Jean A. Amos; Jeanne C. Beck; Maria M. Chan; Daniel H. Farkas; Roger V. Lebo; Carolyn Sue Richards; Benjamin B. Roa; Lawrence M. Silverman; David E. Barton; Bassem A. Bejjani; Dorothy R. Belloni; Susan H. Bernacki; Michele Caggana; Patricia Charache; Elisabeth Dequeker; Andrea Ferreira-Gonzalez; Kenneth J. Friedman; Carol L. Greene; Wayne W. Grody; William Edward Highsmith; Cecelia S. Hinkel; Lisa Kalman; Ira M. Lubin; Elaine Lyon; Deborah A. Payne; Victoria M. Pratt; Elizabeth M. Rohlfs

Purpose: To provide a summary of the outcomes of two working conferences organized by the Centers for Disease Control and Prevention (CDC), to develop recommendations for practical, sustainable mechanisms to make quality control (QC) materials available to the genetic testing community.Methods: Participants were selected to include experts in genetic testing and molecular diagnostics from professional organizations, government agencies, industry, laboratories, academic institutions, cell repositories, and proficiency testing (PT)/external Quality Assessment (EQA) programs. Current efforts to develop QC materials for genetic tests were reviewed; key issues and areas of need were identified; and workgroups were formed to address each area of need and to formulate recommendations and next steps.Results: Recommendations were developed toward establishing a sustainable process to improve the availability of appropriate QC materials for genetic testing, with an emphasis on molecular genetic testing as an initial step.Conclusions: Improving the availability of appropriate QC materials is of critical importance for assuring the quality of genetic testing, enhancing performance evaluation and PT/EQA programs, and facilitating new test development. To meet the needs of the rapidly expanding capacity of genetic testing in clinical and public health settings, a comprehensive, coordinated program should be developed. A Genetic Testing Quality Control Materials Program has therefore been established by CDC in March 2005 to serve these needs.


The Journal of Molecular Diagnostics | 2008

Consensus Characterization of 16 FMR1 Reference Materials: A Consortium Study

Jean Amos Wilson; Victoria M. Pratt; Amit Phansalkar; Kasinathan Muralidharan; W. Edward Highsmith; Jeanne C. Beck; Scott J. Bridgeman; Ebony M. Courtney; Lidia Epp; Andrea Ferreira-Gonzalez; Nick L. Hjelm; Leonard M. Holtegaard; Mohamed Jama; John P. Jakupciak; Monique A. Johnson; Paul Labrousse; Elaine Lyon; Thomas W. Prior; C. Sue Richards; Kristy L. Richie; Benjamin B. Roa; Elizabeth M. Rohlfs; Tina Sellers; Stephanie L. Sherman; Karen A. Siegrist; Lawrence M. Silverman; Joanna Wiszniewska; Lisa Kalman

Fragile X syndrome, which is caused by expansion of a (CGG)(n) repeat in the FMR1 gene, occurs in approximately 1:3500 males and causes mental retardation/behavioral problems. Smaller (CGG)(n) repeat expansions in FMR1, premutations, are associated with premature ovarian failure and fragile X-associated tremor/ataxia syndrome. An FMR1-sizing assay is technically challenging because of high GC content of the (CGG)(n) repeat, the size limitations of conventional PCR, and a lack of reference materials available for test development/validation and routine quality control. The Centers for Disease Control and Prevention and the Association for Molecular Pathology, together with the genetic testing community, have addressed the need for characterized fragile X mutation reference materials by developing characterized DNA samples from 16 cell lines with repeat lengths representing important phenotypic classes and diagnostic cutoffs. The alleles in these materials were characterized by consensus analysis in nine clinical laboratories. The information generated from this study is available on the Centers for Disease Control and Prevention and Coriell Cell Repositories websites. DNA purified from these cell lines is available to the genetics community through the Coriell Cell Repositories. The public availability of these reference materials should help support accurate clinical fragile X syndrome testing.


The Journal of Molecular Diagnostics | 2009

Development of Genomic Reference Materials for Cystic Fibrosis Genetic Testing

Victoria M. Pratt; Michele Caggana; Christina Bridges; Arlene Buller; Lisa DiAntonio; W. Edward Highsmith; Leonard M. Holtegaard; Kasinathan Muralidharan; Elizabeth M. Rohlfs; Jack Tarleton; Lorraine Toji; Shannon D. Barker; Lisa Kalman

The number of different laboratories that perform genetic testing for cystic fibrosis is increasing. However, there are a limited number of quality control and other reference materials available, none of which cover all of the alleles included in commercially available reagents or platforms. The alleles in many publicly available cell lines that could serve as reference materials have neither been confirmed nor characterized. The Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community as well as Coriell Cell Repositories, have characterized an extended panel of publicly available genomic DNA samples that could serve as reference materials for cystic fibrosis testing. Six cell lines [containing the following mutations: E60X (c.178G>T), 444delA (c.312delA), G178R (c.532G>C), 1812-1G>A (c.1680-1G>A), P574H (c.1721C>A), Y1092X (c.3277C>A), and M1101K (c.3302T>A)] were selected from those existing at Coriell, and seven [containing the following mutations: R75X (c.223C>T), R347H (c.1040G>A), 3876delA (c.3744delA), S549R (c.1646A>C), S549N (c.1647G>A), 3905insT (c.3773_3774insT), and I507V (c.1519A>G)] were created. The alleles in these materials were confirmed by testing in six different volunteer laboratories. These genomic DNA reference materials will be useful for quality assurance, proficiency testing, test development, and research and should help to assure the accuracy of cystic fibrosis genetic testing in the future. The reference materials described in this study are all currently available from Coriell Cell Repositories.


Genetics in Medicine | 2007

Development of genomic reference materials for Huntington disease genetic testing

Lisa Kalman; Monique A. Johnson; Jeanne C. Beck; Elizabeth Berry-Kravis; Arlene Buller; Brett Casey; Gerald L. Feldman; James H. Handsfield; John P. Jakupciak; Samantha Maragh; Karla J. Matteson; Kasinathan Muralidharan; Kristy L. Richie; Elizabeth M. Rohlfs; Frederick Schaefer; Tina Sellers; Elaine Spector; C. Sue Richards

Purpose: Diagnostic and predictive testing for Huntington disease requires an accurate measurement of CAG repeats in the HD (IT15) gene. However, precise repeat sizing can be technically challenging, and is complicated by the lack of quality control and reference materials (RM). The aim of this study was to characterize genomic DNA from 14 Huntington cell lines available from the National Institute of General Medical Sciences Human Genetic Cell Repository at the Coriell Cell Repositories for use as reference materials for CAG repeat sizing.Methods: Fourteen Huntington cell lines were selected for study. The alleles in these materials represent a large range of sizes that include important diagnostic cutoffs and allele combinations. The allele measurement study was conducted by ten volunteer laboratories using a variety of polymerase chain reaction-based in-house developed methods and by DNA sequence analysis.Results: The Huntington alleles in the 14 genomic DNA samples range in size from 15 to 100 CAG repeats. There was good agreement among the ten laboratories, and thus, the 95% confidence interval was small for each measurement. The allele size determined by DNA sequence analysis agreed with the laboratory developed tests.Conclusion: These DNA materials, which are available from Coriell Cell Repositories, will facilitate accurate and reliable Huntington genetic testing.


The Journal of Molecular Diagnostics | 2009

Development of genomic DNA reference materials for genetic testing of disorders common in people of ashkenazi jewish descent.

Lisa Kalman; Jean Amos Wilson; Arlene Buller; John Dixon; Lisa Edelmann; Louis Geller; William Edward Highsmith; Leonard M. Holtegaard; Ruth Kornreich; Elizabeth M. Rohlfs; Toby L. Payeur; Tina Sellers; Lorraine Toji; Kasinathan Muralidharan

Many recessive genetic disorders are found at a higher incidence in people of Ashkenazi Jewish (AJ) descent than in the general population. The American College of Medical Genetics and the American College of Obstetricians and Gynecologists have recommended that individuals of AJ descent undergo carrier screening for Tay Sachs disease, Canavan disease, familial dysautonomia, mucolipidosis IV, Niemann-Pick disease type A, Fanconi anemia type C, Bloom syndrome, and Gaucher disease. Although these recommendations have led to increased test volumes and number of laboratories offering AJ screening, well-characterized genomic reference materials are not publicly available. The Centers for Disease Control and Prevention-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and Coriell Cell Repositories, have developed a panel of characterized genomic reference materials for AJ genetic testing. DNA from 31 cell lines, representing many of the common alleles for Tay Sachs disease, Canavan disease, familial dysautonomia, mucolipidosis IV, Niemann-Pick disease type A, Fanconi anemia type C, Bloom syndrome, Gaucher disease, and glycogen storage disease, was prepared by the Repository and tested in six clinical laboratories using three different PCR-based assay platforms. A total of 33 disease alleles was assayed and 25 different alleles were identified. These characterized materials are publicly available from Coriell and may be used for quality control, proficiency testing, test development, and research.

Collaboration


Dive into the Elizabeth M. Rohlfs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Kalman

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne C. Beck

Coriell Institute For Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristy L. Richie

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Lawrence M. Silverman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Tina Sellers

Coriell Institute For Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge