Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kasinathan Muralidharan is active.

Publication


Featured researches published by Kasinathan Muralidharan.


Genetics in Medicine | 2007

A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort

Girish V. Putcha; Bassem A. Bejjani; Stacey L. Bleoo; Jessica K. Booker; John C. Carey; Nancy Carson; Soma Das; Melissa A. Dempsey; Julie M. Gastier-Foster; John H. Greinwald; Marcy L. Hoffmann; Linda Jo Bone Jeng; Margaret A. Kenna; Ishrag Khababa; Margaret Lilley; Rong Mao; Kasinathan Muralidharan; Iris M. Otani; Heidi L. Rehm; Fred Schaefer; William K. Seltzer; Elaine Spector; Michelle Springer; Karen E. Weck; Richard J. Wenstrup; Stacey Withrow; Bai-Lin Wu; Maimoona A. Zariwala; Iris Schrijver

Purpose: The aim of the study was to determine the actual GJB2 and GJB6 mutation frequencies in North America after several years of generalized testing for autosomal recessive nonsyndromic sensorineural hearing loss to help guide diagnostic testing algorithms, especially in light of molecular diagnostic follow-up to universal newborn hearing screening.Methods: Mutation types, frequencies, ethnic distributions, and genotype-phenotype correlations for GJB2 and GJB6 were assessed in a very large North American cohort.Results: GJB2 variants were identified in 1796 (24.3%) of the 7401 individuals examined, with 399 (5.4%) homozygous and 429 (5.8%) compound heterozygous. GJB6 deletion testing was performed in 12.0% (888/7401) of all cases. The >300-kb deletion was identified in only nine individuals (1.0%), all of whom were compound heterozygous for mutations in GJB2 and GJB6. Among a total of 139 GJB2 variants identified, 53 (38.1%) were previously unreported, presumably representing novel pathogenic or benign variants.Conclusions: The frequency and distribution of sequence changes in GJB2 and GJB6 in North America differ from those previously reported, suggesting a considerable role for loci other than GJB2 and GJB6 in the etiology of autosomal recessive nonsyndromic sensorineural hearing loss, with minimal prevalence of the GJB6 deletion.Purpose: To determine short–term effects of intravitreal bevacizumab for subfoveal choroidal neovascularization (CNV) in pathologic myopia. Methods: In this prospective interventional case series, patients were treated with 2.5 mg of intravitreal bevacizumab and followed for 3 months. Best-corrected visual acuity (BCVA), optical coherence tomography (OCT), and fluorescein angiography (FA) were recorded. Indications for retreatment were active leaking CNV shown by FA and presence of subretinal fluid by OCT in combination with visual disturbances. Results: Fourteen patients were included, with a mean age of 53.86 ± 16.26 years (range 29–85). Mean spherical equivalent was −13.87 ± 3.68 diopters (−7.25 to −20.50). Minimum follow-up was 3 months. There were no adverse events. The mean initial visual acuity was 20/200 improving to 20/100 at 2 weeks, 20/80 at 4 weeks, and 20/60 at 8 and 12 weeks (P = 0.007; P = 0.001; P = 0.005; P = 0.001, respectively). Initial foveal thickness improved from 385.43 &mgr;m ± 125.83 &mgr;m to 257.64 ± 76.6 &mgr;m and 194.54 ± 54.35 &mgr;m after the first and third month, respectively (P = 0.001). Conclusions: Initial treatment results of patients with CNV due to pathologic myopia did not reveal any short-term safety concerns. Intravitreal bevacizumab resulted in a significant decrease in foveal thickness and improvement in visual acuity. These favorable initial results support further larger and long-term studies.


Evolution | 2001

PHYLOGEOGRAPHY OF THE ASIAN ELEPHANT (ELEPHAS MAXIMUS) BASED ON MITOCHONDRIAL DNA

Robert C. Fleischer; Elizabeth A. Perry; Kasinathan Muralidharan; Ernest E. Stevens; Christen M. Wemmer

Abstract Populations of the Asian elephant (Elephas maximus) have been reduced in size and become highly fragmented during the past 3000 to 4000 years. Historical records reveal elephant dispersal by humans via trade and war. How have these anthropogenic impacts affected genetic variation and structure of Asian elephant populations? We sequenced mitochondrial DNA (mtDNA) to assay genetic variation and phylogeography across much of the Asian elephants range. Initially we compare cytochrome b sequences (cyt b) between nine Asian and five African elephants and use the fossil‐based age of their separation (∼5 million years ago) to obtain a rate of about 0.013 (95% CI = 0.011–0.018) corrected sequence divergence per million years. We also assess variation in part of the mtDNA control region (CR) and adjacent tRNA genes in 57 Asian elephants from seven countries (Sri Lanka, India, Nepal, Myanmar, Thailand, Malaysia, and Indonesia). Asian elephants have typical levels of mtDNA variation, and coalescence analyses suggest their populations were growing in the late Pleistocene. Reconstructed phylogenies reveal two major clades (A and B) differing on average by HKY85/Γ‐corrected distances of 0.020 for cyt b and 0.050 for the CR segment (corresponding to a coalescence time based on our cyt b rate of ∼1.2 million years). Individuals of both major clades exist in all locations but Indonesia and Malaysia. Most elephants from Malaysia and all from Indonesia are in well‐supported, basal clades within clade A, thus supporting their status as evolutionarily significant units (ESUs). The proportion of clade A individuals decreases to the north, which could result from retention and subsequent loss of ancient lineages in long‐term stable populations or, perhaps more likely, via recent mixing of two expanding populations that were isolated in the mid‐Pleistocene. The distribution of clade A individuals appears to have been impacted by human trade in elephants among Myanmar, Sri Lanka, and India, and the subspecies and ESU statuses of Sri Lankan elephants are not supported by molecular data.


The Journal of Molecular Diagnostics | 2010

Characterization of 107 Genomic DNA Reference Materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1: A GeT-RM and Association for Molecular Pathology Collaborative Project

Victoria M. Pratt; Barbara A. Zehnbauer; Jean Amos Wilson; Ruth Baak; Nikolina Babic; Maria P. Bettinotti; Arlene Buller; Ken Butz; Matthew Campbell; Chris J. Civalier; Abdalla El-Badry; Daniel H. Farkas; Elaine Lyon; Saptarshi Mandal; Jason McKinney; Kasinathan Muralidharan; Le Anne Noll; Tara L. Sander; Junaid Shabbeer; Chingying Smith; Milhan Telatar; Lorraine Toji; Anand Vairavan; Carlos Vance; Karen E. Weck; Alan H.B. Wu; Kiang-Teck J. Yeo; Markus Zeller; Lisa Kalman

Pharmacogenetic testing is becoming more common; however, very few quality control and other reference materials that cover alleles commonly included in such assays are currently available. To address these needs, the Centers for Disease Control and Preventions Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, have characterized a panel of 107 genomic DNA reference materials for five loci (CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1) that are commonly included in pharmacogenetic testing panels and proficiency testing surveys. Genomic DNA from publicly available cell lines was sent to volunteer laboratories for genotyping. Each sample was tested in three to six laboratories using a variety of commercially available or laboratory-developed platforms. The results were consistent among laboratories, with differences in allele assignments largely related to the manufacturers assay design and variable nomenclature, especially for CYP2D6. The alleles included in the assay platforms varied, but most were identified in the set of 107 DNA samples. Nine additional pharmacogenetic loci (CYP4F2, EPHX1, ABCB1, HLAB, KIF6, CYP3A4, CYP3A5, TPMT, and DPD) were also tested. These samples are publicly available from Coriell and will be useful for quality assurance, proficiency testing, test development, and research.


The Journal of Molecular Diagnostics | 2008

Consensus Characterization of 16 FMR1 Reference Materials: A Consortium Study

Jean Amos Wilson; Victoria M. Pratt; Amit Phansalkar; Kasinathan Muralidharan; W. Edward Highsmith; Jeanne C. Beck; Scott J. Bridgeman; Ebony M. Courtney; Lidia Epp; Andrea Ferreira-Gonzalez; Nick L. Hjelm; Leonard M. Holtegaard; Mohamed Jama; John P. Jakupciak; Monique A. Johnson; Paul Labrousse; Elaine Lyon; Thomas W. Prior; C. Sue Richards; Kristy L. Richie; Benjamin B. Roa; Elizabeth M. Rohlfs; Tina Sellers; Stephanie L. Sherman; Karen A. Siegrist; Lawrence M. Silverman; Joanna Wiszniewska; Lisa Kalman

Fragile X syndrome, which is caused by expansion of a (CGG)(n) repeat in the FMR1 gene, occurs in approximately 1:3500 males and causes mental retardation/behavioral problems. Smaller (CGG)(n) repeat expansions in FMR1, premutations, are associated with premature ovarian failure and fragile X-associated tremor/ataxia syndrome. An FMR1-sizing assay is technically challenging because of high GC content of the (CGG)(n) repeat, the size limitations of conventional PCR, and a lack of reference materials available for test development/validation and routine quality control. The Centers for Disease Control and Prevention and the Association for Molecular Pathology, together with the genetic testing community, have addressed the need for characterized fragile X mutation reference materials by developing characterized DNA samples from 16 cell lines with repeat lengths representing important phenotypic classes and diagnostic cutoffs. The alleles in these materials were characterized by consensus analysis in nine clinical laboratories. The information generated from this study is available on the Centers for Disease Control and Prevention and Coriell Cell Repositories websites. DNA purified from these cell lines is available to the genetics community through the Coriell Cell Repositories. The public availability of these reference materials should help support accurate clinical fragile X syndrome testing.


Genetics in Medicine | 2011

Cystic fibrosis testing 8 years on: lessons learned from carrier screening and sequencing analysis.

Charles M. Strom; Beryl Crossley; Arlene Buller-Buerkle; Michael Jarvis; Franklin Quan; Mei Peng; Kasinathan Muralidharan; Victoria M. Pratt; Joy B Redman; Weimin Sun

Purpose: This study reviews data from our cystic fibrosis testing program to evaluate the performance of population-based carrier screening and compare observed detection rates with predicted results of the American College of Medical Genetics/American College of Obstetricians and Gynecologists recommended panel of 23 mutations.Methods: We queried our proprietary databases containing approximately 3 million cystic fibrosis screening tests, 1300 prenatal diagnostic tests, and 2400 cystic fibrosis sequencing analyses.Results: We observed an overall cystic fibrosis carrier frequency of 1:37.6 individuals in the pan-ethnic tested population. This represents a detection rate of 77%, given an estimated US pan-ethnic carrier frequency of 1:29. For patients self-identified as white or Ashkenazi Jewish, a carrier frequency of 1:29 and 1:27 were observed, respectively. A combined frequency of 1:28, representing close to 90% of carriers, was identified in these two highest risk populations. In total, 119 affected fetuses were identified by prenatal diagnoses, a ratio of 1 affected fetus per 25,000 carrier screens. Of 62 newborns with positive immunoreactive trypsinogen and positive sweat tests, almost all of whom had been tested using the American College of Medical Genetics/American College of Obstetricians and Gynecologists panel, only two individuals would have been identified using an expanded mutation panel.Conclusion: The American College of Medical Genetics/American College of Obstetricians and Gynecologists panel of 23 mutations is performing as predicted in detecting cystic fibrosis carriers in the United States among all ethnic groups. No recurrent mutations have been detected in sufficient numbers to justify including any additional mutations to the existing panel. An expanded American College of Medical Genetics/American College of Obstetricians and Gynecologists panel would have a minimal impact on the prevention of births of children affected with cystic fibrosis.


The Journal of Molecular Diagnostics | 2009

Development of Genomic Reference Materials for Cystic Fibrosis Genetic Testing

Victoria M. Pratt; Michele Caggana; Christina Bridges; Arlene Buller; Lisa DiAntonio; W. Edward Highsmith; Leonard M. Holtegaard; Kasinathan Muralidharan; Elizabeth M. Rohlfs; Jack Tarleton; Lorraine Toji; Shannon D. Barker; Lisa Kalman

The number of different laboratories that perform genetic testing for cystic fibrosis is increasing. However, there are a limited number of quality control and other reference materials available, none of which cover all of the alleles included in commercially available reagents or platforms. The alleles in many publicly available cell lines that could serve as reference materials have neither been confirmed nor characterized. The Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community as well as Coriell Cell Repositories, have characterized an extended panel of publicly available genomic DNA samples that could serve as reference materials for cystic fibrosis testing. Six cell lines [containing the following mutations: E60X (c.178G>T), 444delA (c.312delA), G178R (c.532G>C), 1812-1G>A (c.1680-1G>A), P574H (c.1721C>A), Y1092X (c.3277C>A), and M1101K (c.3302T>A)] were selected from those existing at Coriell, and seven [containing the following mutations: R75X (c.223C>T), R347H (c.1040G>A), 3876delA (c.3744delA), S549R (c.1646A>C), S549N (c.1647G>A), 3905insT (c.3773_3774insT), and I507V (c.1519A>G)] were created. The alleles in these materials were confirmed by testing in six different volunteer laboratories. These genomic DNA reference materials will be useful for quality assurance, proficiency testing, test development, and research and should help to assure the accuracy of cystic fibrosis genetic testing in the future. The reference materials described in this study are all currently available from Coriell Cell Repositories.


Genetics in Medicine | 2006

Characterization of an unusual deletion of the galactose-1-phosphate uridyl transferase ( GALT ) gene

Bradford Coffee; Lawrence N. Hjelm; Angela Delorenzo; Ebony M. Courtney; Chunli Yu; Kasinathan Muralidharan

Purpose: We previously reported a deletion of the Galactose-1-Phosphate Uridyl Transferase (GALT) gene. This deletion can cause apparent homozygosity for variants located on the opposite allele, potentially resulting in a discrepancy between the biochemical phenotype and the apparent genotype in an individual. The purpose of this study was to determine the deletion breakpoints, allowing the development of a rapid and reliable molecular test for the mutation.Methods: A Polymerase Chain Reaction walking strategy was used to map the 5′ and 3′ breakpoints. The junction fragment was amplified and sequenced to precisely characterize the deletion breakpoints.Results: The deletion has a bipartite structure involving two large segments of the GALT gene, while retaining a short internal segment of the gene. Molecular characterization allowed the development of a deletion specific Polymerase Chain Reaction-based assay. In 25 individuals who had a biochemical carrier galactosemia phenotype, but tested negative for 8 common GALT gene variants, 3 carried this deletion.Conclusion: This deletion occurs at an appreciable frequency and should be considered when there is a discrepancy between the genotype and biochemical phenotype. Many of the individuals carrying the allele were of Ashkenazi Jewish ancestry suggesting that the deletion may be a common cause of galactosemia in that population.


American Journal of Medical Genetics | 1996

Asplenia syndrome in a child with a balanced reciprocal translocation of chromosomes 11 and 20 [46,XX,t(11;20)(q13.1;q13.13)]

Sallie B. Freeman; Kasinathan Muralidharan; Dorothy Pettay; R. Dwain Blackston; Kristin M. May

We present a 6-year-old girl with a balanced 11;20 translocation [46,XX,t(11;20)(q13.1;q13.13)pat], asplenia, pulmonic stenosis, Hirschsprung disease, minor anomalies, and mental retardation. This case represents the second report of an individual with situs abnormalities and a balanced chromosome rearrangement involving a breakpoint at 11q13. Polymerase chain reaction (PCR) analysis of microsatellite markers excluded uniparental disomy for chromosomes 11 and 20. Segregation analysis of markers in the 11q13 region in the proposita and her phenotypically normal carrier sibs did not show a unique combination of maternal and paternal alleles in the patient. We discuss several possible explanations for the simultaneous occurrence of situs abnormalities and a balanced 11;20 translocation. These include (1) chance, (2) a further chromosome rearrangement in the patient, (3) gene disruption and random situs determination, and (4) gene disruption plus transmission of a recessive or imprinted allele from the mother.


The Journal of Molecular Diagnostics | 2011

Population Carrier Screening for Spinal Muscular Atrophy: A Position Statement of the Association for Molecular Pathology

Kasinathan Muralidharan; Robert B. Wilson; Shuji Ogino; Narasimhan Nagan; Christine Curtis; Iris Schrijver

Spinal muscular atrophy is a common and often fatal autosomal recessive disorder for which carrier screening is available. The Association for Molecular Pathology has evaluated recent opinions regarding population carrier screening, reviewed the current literature, and developed a position statement that includes specific recommendations addressing both diagnostic and practical issues that affect implementation.


Genetics in Medicine | 2007

Development of genomic reference materials for Huntington disease genetic testing

Lisa Kalman; Monique A. Johnson; Jeanne C. Beck; Elizabeth Berry-Kravis; Arlene Buller; Brett Casey; Gerald L. Feldman; James H. Handsfield; John P. Jakupciak; Samantha Maragh; Karla J. Matteson; Kasinathan Muralidharan; Kristy L. Richie; Elizabeth M. Rohlfs; Frederick Schaefer; Tina Sellers; Elaine Spector; C. Sue Richards

Purpose: Diagnostic and predictive testing for Huntington disease requires an accurate measurement of CAG repeats in the HD (IT15) gene. However, precise repeat sizing can be technically challenging, and is complicated by the lack of quality control and reference materials (RM). The aim of this study was to characterize genomic DNA from 14 Huntington cell lines available from the National Institute of General Medical Sciences Human Genetic Cell Repository at the Coriell Cell Repositories for use as reference materials for CAG repeat sizing.Methods: Fourteen Huntington cell lines were selected for study. The alleles in these materials represent a large range of sizes that include important diagnostic cutoffs and allele combinations. The allele measurement study was conducted by ten volunteer laboratories using a variety of polymerase chain reaction-based in-house developed methods and by DNA sequence analysis.Results: The Huntington alleles in the 14 genomic DNA samples range in size from 15 to 100 CAG repeats. There was good agreement among the ten laboratories, and thus, the 95% confidence interval was small for each measurement. The allele size determined by DNA sequence analysis agreed with the laboratory developed tests.Conclusion: These DNA materials, which are available from Coriell Cell Repositories, will facilitate accurate and reliable Huntington genetic testing.

Collaboration


Dive into the Kasinathan Muralidharan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth M. Rohlfs

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne C. Beck

Coriell Institute For Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kristy L. Richie

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Lisa Kalman

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Sellers

Coriell Institute For Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge