Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanne C. Beck is active.

Publication


Featured researches published by Jeanne C. Beck.


Breast Cancer Research | 2004

The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer

Esther M. John; John L. Hopper; Jeanne C. Beck; Julia A. Knight; Susan L. Neuhausen; Ruby T. Senie; Argyrios Ziogas; Irene L. Andrulis; Hoda Anton-Culver; Norman F. Boyd; Saundra S. Buys; Mary B. Daly; Frances P. O'Malley; Regina M. Santella; Melissa C. Southey; Vickie L. Venne; Deon J. Venter; Dee W. West; Alice S. Whittemore; Daniela Seminara

IntroductionThe etiology of familial breast cancer is complex and involves genetic and environmental factors such as hormonal and lifestyle factors. Understanding familial aggregation is a key to understanding the causes of breast cancer and to facilitating the development of effective prevention and therapy. To address urgent research questions and to expedite the translation of research results to the clinical setting, the National Cancer Institute (USA) supported in 1995 the establishment of a novel research infrastructure, the Breast Cancer Family Registry, a collaboration of six academic and research institutions and their medical affiliates in the USA, Canada, and Australia.MethodsThe sites have developed core family history and epidemiology questionnaires, data dictionaries, and common protocols for biospecimen collection and processing and pathology review. An Informatics Center has been established to collate, manage, and distribute core data.ResultsAs of September 2003, 9116 population-based and 2834 clinic-based families have been enrolled, including 2346 families from minority populations. Epidemiology questionnaire data are available for 6779 affected probands (with a personal history of breast cancer), 4116 unaffected probands, and 16,526 relatives with or without a personal history of breast or ovarian cancer. The biospecimen repository contains blood or mouthwash samples for 6316 affected probands, 2966 unaffected probands, and 10,763 relatives, and tumor tissue samples for 4293 individuals.ConclusionThis resource is available to internal and external researchers for collaborative, interdisciplinary, and translational studies of the genetic epidemiology of breast cancer. Detailed information can be found at the URL http://www.cfr.epi.uci.edu/.


The American Journal of Surgical Pathology | 2007

BRCA2 mutation-associated breast cancers exhibit a distinguishing phenotype based on morphology and molecular profiles from tissue microarrays

Anita Bane; Jeanne C. Beck; Ira J. Bleiweiss; Saundra S. Buys; Edison Catalano; Mary B. Daly; Graham G. Giles; Andy K. Godwin; Hanina Hibshoosh; John L. Hopper; Esther M. John; Lester J. Layfield; Teri A. Longacre; Alexander Miron; Rubie Senie; Melissa C. Southey; Dee W. West; Alice S. Whittemore; Hong Wu; Irene L. Andrulis; Frances P. O'Malley

A distinct morphologic and molecular phenotype has been reported for BRCA1-associated breast cancers; however, the phenotype of BRCA2-associated breast cancers is less certain. To comprehensively characterize BRCA2-associated breast cancers we performed a retrospective case control study using tumors accrued through the Breast Cancer Family Registry. We examined the tumor morphology and hormone receptor status in 157 hereditary breast cancers with germline mutations in BRCA2 and 314 control tumors negative for BRCA1 and BRCA2 mutations that were matched for age and ethnicity. Tissue microarrays were constructed from 64 BRCA2-associated and 185 control tumors. Tissue microarray sections were examined for HER2/neu protein overexpression, p53 status and the expression of basal markers, luminal markers, cyclin D1, bcl2, and MIB1 by immunohistochemistry. The majority of BRCA2-associated tumors and control tumors were invasive ductal, no special-type tumors. In contrast to control tumors, BRCA2-associated cancers were more likely to be high grade (P<0.0001) and to have pushing tumor margins (P=0.0005). Adjusting for grade, BRCA2-associated tumors were more often estrogen receptor positive (P=0.008) and exhibited a luminal phenotype (P=0.003). They were less likely than controls to express the basal cytokeratin CK5 (P=0.03) or to overexpress HER2/neu protein (P=0.06). There was no difference in p53, bcl2, MIB1, or cyclin D1 expression between BRCA2-associated and control tumors. We have demonstrated, in the largest series of BRCA2-associated breast cancers studied to date, that these tumors are predominantly high-grade invasive ductal carcinomas of no special type and they demonstrate a luminal phenotype despite their high histologic grade.


Epidemiology | 2002

DNA banking for epidemiologic studies: a review of current practices.

Karen K. Steinberg; Jeanne C. Beck; Deborah A. Nickerson; Montserrat Garcia-Closas; Margaret Gallagher; Michele Caggana; Yvonne Reid; Mark Cosentino; Jay Ji; Delene Johnson; Richard B. Hayes; Marie C. Earley; Fred Lorey; Harry Hannon; Muin J. Khoury; Eric J. Sampson

To study genetic risk factors for common diseases, researchers have begun collecting DNA specimens in large epidemiologic studies and surveys. However, little information is available to guide researchers in selecting the most appropriate specimens. In an effort to gather the best information for the selection of specimens for these studies, we convened a meeting of scientists engaged in DNA banking for large epidemiologic studies. In this discussion, we review the information presented at that meeting in the context of recent published information. Factors to be considered in choosing the appropriate specimens for epidemiologic studies include quality and quantity of DNA, convenience of collection and storage, cost, and ability to accommodate future needs for genotyping. We focus on four types of specimens that are stored in these banks: (1) whole blood preserved as dried blood spots; (2) whole blood from which genomic DNA is isolated, (3) immortalized lymphocytes from whole blood or separated lymphocytes, prepared immediately or subsequent to cryopreservation; and (4) buccal epithelial cells. Each of the specimens discussed is useful for epidemiologic studies according to specific needs, which we enumerate in our conclusions.


Philosophical Transactions of the Royal Society B | 2005

The problems and promise of DNA barcodes for species diagnosis of primate biomaterials.

Joseph G. Lorenz; Whitney E Jackson; Jeanne C. Beck; Robert Hanner

The Integrated Primate Biomaterials and Information Resource (www.IPBIR.org) provides essential research reagents to the scientific community by establishing, verifying, maintaining, and distributing DNA and RNA derived from primate cell cultures. The IPBIR uses mitochondrial cytochrome c oxidase subunit I sequences to verify the identity of samples for quality control purposes in the accession, cell culture, DNA extraction processes and prior to shipping to end users. As a result, IPBIR is accumulating a database of ‘DNA barcodes’ for many species of primates. However, this quality control process is complicated by taxon specific patterns of ‘universal primer’ failure, as well as the amplification or co-amplification of nuclear pseudogenes of mitochondrial origins. To overcome these difficulties, taxon specific primers have been developed, and reverse transcriptase PCR is utilized to exclude these extraneous sequences from amplification. DNA barcoding of primates has applications to conservation and law enforcement. Depositing barcode sequences in a public database, along with primer sequences, trace files and associated quality scores, makes this species identification technique widely accessible. Reference DNA barcode sequences should be derived from, and linked to, specimens of known provenance in web-accessible collections in order to validate this system of molecular diagnostics.


Genetics in Medicine | 2005

Developing a sustainable process to provide quality control materials for genetic testing

Bin Chen; Catherine D. O'Connell; D. Joe Boone; Jean A. Amos; Jeanne C. Beck; Maria M. Chan; Daniel H. Farkas; Roger V. Lebo; Carolyn Sue Richards; Benjamin B. Roa; Lawrence M. Silverman; David E. Barton; Bassem A. Bejjani; Dorothy R. Belloni; Susan H. Bernacki; Michele Caggana; Patricia Charache; Elisabeth Dequeker; Andrea Ferreira-Gonzalez; Kenneth J. Friedman; Carol L. Greene; Wayne W. Grody; William Edward Highsmith; Cecelia S. Hinkel; Lisa Kalman; Ira M. Lubin; Elaine Lyon; Deborah A. Payne; Victoria M. Pratt; Elizabeth M. Rohlfs

Purpose: To provide a summary of the outcomes of two working conferences organized by the Centers for Disease Control and Prevention (CDC), to develop recommendations for practical, sustainable mechanisms to make quality control (QC) materials available to the genetic testing community.Methods: Participants were selected to include experts in genetic testing and molecular diagnostics from professional organizations, government agencies, industry, laboratories, academic institutions, cell repositories, and proficiency testing (PT)/external Quality Assessment (EQA) programs. Current efforts to develop QC materials for genetic tests were reviewed; key issues and areas of need were identified; and workgroups were formed to address each area of need and to formulate recommendations and next steps.Results: Recommendations were developed toward establishing a sustainable process to improve the availability of appropriate QC materials for genetic testing, with an emphasis on molecular genetic testing as an initial step.Conclusions: Improving the availability of appropriate QC materials is of critical importance for assuring the quality of genetic testing, enhancing performance evaluation and PT/EQA programs, and facilitating new test development. To meet the needs of the rapidly expanding capacity of genetic testing in clinical and public health settings, a comprehensive, coordinated program should be developed. A Genetic Testing Quality Control Materials Program has therefore been established by CDC in March 2005 to serve these needs.


The Journal of Molecular Diagnostics | 2008

Consensus Characterization of 16 FMR1 Reference Materials: A Consortium Study

Jean Amos Wilson; Victoria M. Pratt; Amit Phansalkar; Kasinathan Muralidharan; W. Edward Highsmith; Jeanne C. Beck; Scott J. Bridgeman; Ebony M. Courtney; Lidia Epp; Andrea Ferreira-Gonzalez; Nick L. Hjelm; Leonard M. Holtegaard; Mohamed Jama; John P. Jakupciak; Monique A. Johnson; Paul Labrousse; Elaine Lyon; Thomas W. Prior; C. Sue Richards; Kristy L. Richie; Benjamin B. Roa; Elizabeth M. Rohlfs; Tina Sellers; Stephanie L. Sherman; Karen A. Siegrist; Lawrence M. Silverman; Joanna Wiszniewska; Lisa Kalman

Fragile X syndrome, which is caused by expansion of a (CGG)(n) repeat in the FMR1 gene, occurs in approximately 1:3500 males and causes mental retardation/behavioral problems. Smaller (CGG)(n) repeat expansions in FMR1, premutations, are associated with premature ovarian failure and fragile X-associated tremor/ataxia syndrome. An FMR1-sizing assay is technically challenging because of high GC content of the (CGG)(n) repeat, the size limitations of conventional PCR, and a lack of reference materials available for test development/validation and routine quality control. The Centers for Disease Control and Prevention and the Association for Molecular Pathology, together with the genetic testing community, have addressed the need for characterized fragile X mutation reference materials by developing characterized DNA samples from 16 cell lines with repeat lengths representing important phenotypic classes and diagnostic cutoffs. The alleles in these materials were characterized by consensus analysis in nine clinical laboratories. The information generated from this study is available on the Centers for Disease Control and Prevention and Coriell Cell Repositories websites. DNA purified from these cell lines is available to the genetics community through the Coriell Cell Repositories. The public availability of these reference materials should help support accurate clinical fragile X syndrome testing.


The Journal of Molecular Diagnostics | 2003

Establishment of Stably EBV-Transformed Cell Lines from Residual Clinical Blood Samples for Use in Performance Evaluation and Quality Assurance in Molecular Genetic Testing

Susan H. Bernacki; Ana K. Stankovic; Laurina O. Williams; Jeanne C. Beck; James E. Herndon; Karen Snow-Bailey; Thomas W. Prior; Karla J. Matteson; Linda Wasserman; Eugene C. Cole; Timothy T. Stenzel

Positive control materials for clinical molecular genetic testing applications are currently in critically short supply or non-existent for many genetically based diseases of public health importance. Here we demonstrate that anonymous, residual, clinical blood samples are potential sources of viable lymphocytes for establishing Epstein-Barr virus (EBV)-transformed blood lymphocyte cell lines. We attempted to transform 34 residual blood samples, and analyzed transformation success with respect to sample age, anticoagulant, storage temperature, volume, hemolysis, and patient age and sex. In univariate analysis, sample age was significantly associated with transformation success (P = 0.002). The success rate was 67% (6 of 9) for samples 1 to 7 days old, 38% (3 of 8) for samples 8 to 14 days old and 0% for samples 15 to 21 (0 of 11) days old. When we controlled for sample age in multivariate logistic regression, anticoagulant and storage temperature approached significance (P = 0.070 and 0.087, respectively; samples in acid citrate dextrose (ACD) and refrigerated samples were more likely to transform). Based on these findings, we suggest that samples collected in either ACD or ethylene diamine tetraacetic acid, and up to 14 days old (refrigerated) or 7 days old (stored ambient), are reasonable candidates for EBV transformation. The transformation rate for samples that met these criteria was 63% (10 of 16). Implementation of this process could help alleviate the shortage of positive control materials for clinical molecular genetic testing.


Cancer Epidemiology, Biomarkers & Prevention | 2006

The AIB1 Polyglutamine Repeat Does Not Modify Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

Amanda B. Spurdle; Antonis C. Antoniou; Livia Kelemen; Helene Holland; Susan Peock; Margaret Cook; Paula Smith; Mark H. Greene; Jacques Simard; Marie Plourde; Melissa C. Southey; Andrew K. Godwin; Jeanne C. Beck; Alexander Miron; Mary B. Daly; Regina M. Santella; John L. Hopper; Esther M. John; Irene L. Andrulis; Francine Durocher; Jeffery P. Struewing; Douglas F. Easton; Georgia Chenevix-Trench

This is by far the largest study of its kind to date, and further suggests that AIB1 does not play a substantial role in modifying the phenotype of BRCA1 and BRCA2 carriers. The AIB1 gene encodes the AIB1/SRC-3 steroid hormone receptor coactivator, and amplification of the gene and/or protein occurs in breast and ovarian tumors. A CAG/CAA repeat length polymorphism encodes a stretch of 17 to 29 glutamines in the HR-interacting carboxyl-terminal region of the protein which is somatically unstable in tumor tissues and cell lines. There is conflicting evidence regarding the role of this polymorphism as a modifier of breast cancer risk in BRCA1 and BRCA2 carriers. To further evaluate the evidence for an association between AIB1 glutamine repeat length and breast cancer risk in BRCA1 and BRCA2 mutation carriers, we have genotyped this polymorphism in 1,090 BRCA1 and 661 BRCA2 mutation carriers from Australia, Europe, and North America. There was no evidence for an increased risk associated with AIB1 glutamine repeat length. Given the large sample size, with more than adequate power to detect previously reported effects, we conclude that the AIB1 glutamine repeat does not substantially modify risk of breast cancer in BRCA1 and BRCA2 mutation carriers. (Cancer Epidemiol Biomarkers Prev 2006;15(1):76–9)


Genetics in Medicine | 2007

Development of genomic reference materials for Huntington disease genetic testing

Lisa Kalman; Monique A. Johnson; Jeanne C. Beck; Elizabeth Berry-Kravis; Arlene Buller; Brett Casey; Gerald L. Feldman; James H. Handsfield; John P. Jakupciak; Samantha Maragh; Karla J. Matteson; Kasinathan Muralidharan; Kristy L. Richie; Elizabeth M. Rohlfs; Frederick Schaefer; Tina Sellers; Elaine Spector; C. Sue Richards

Purpose: Diagnostic and predictive testing for Huntington disease requires an accurate measurement of CAG repeats in the HD (IT15) gene. However, precise repeat sizing can be technically challenging, and is complicated by the lack of quality control and reference materials (RM). The aim of this study was to characterize genomic DNA from 14 Huntington cell lines available from the National Institute of General Medical Sciences Human Genetic Cell Repository at the Coriell Cell Repositories for use as reference materials for CAG repeat sizing.Methods: Fourteen Huntington cell lines were selected for study. The alleles in these materials represent a large range of sizes that include important diagnostic cutoffs and allele combinations. The allele measurement study was conducted by ten volunteer laboratories using a variety of polymerase chain reaction-based in-house developed methods and by DNA sequence analysis.Results: The Huntington alleles in the 14 genomic DNA samples range in size from 15 to 100 CAG repeats. There was good agreement among the ten laboratories, and thus, the 95% confidence interval was small for each measurement. The allele size determined by DNA sequence analysis agreed with the laboratory developed tests.Conclusion: These DNA materials, which are available from Coriell Cell Repositories, will facilitate accurate and reliable Huntington genetic testing.


Somatic Cell and Molecular Genetics | 1999

Brief Communication: Regional Mapping Panels for Human Chromosomes 1, 2, and 7

Jay Leonard; Lorraine Toji; Patrick Bender; Christine Beiswanger; Jeanne C. Beck; Johnson Rt

The NIGMS Human Genetic Cell Repository has assembled regional mapping panels for human chromosomes 1, 2, and 7 from human rodent somatic cell hybrids submitted to the collection by researchers from 14 different laboratories. All hybrids were characterized initially by the submitters and verified by the Repository. Each hybrid carries a stable defined human segment as a derivative or deletion chromosome. These panels define 8–10 intervals for each chromosome. The panel for chromosome 2 is a new resource. The panels for chromosomes 1 and 7 complement previously published panels. The Repository distributes these regional mapping panels as cell cultures or as DNA. Information about these panels as well as for panels for chromosomes 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 21, 22, and X may be viewed in the NIGMS Repository electronic catalog (http://locus.umdnj.edu/ptnigms).

Collaboration


Dive into the Jeanne C. Beck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth M. Rohlfs

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristy L. Richie

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Patrick Bender

Coriell Institute For Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge