Ella Suzanne Field
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ella Suzanne Field.
Applied Optics | 2014
John Curtis Bellum; Ella Suzanne Field; Damon E. Kletecka; Finis W. Long
High-reflection coatings with broad bandwidth can be achieved by pairing a low refractive index material, such as SiO2, with a high refractive index material, such as TiO2. To achieve high refractive index, low absorption TiO2 films, we optimized the reactive, ion-assisted deposition process (O2 levels, deposition rate, and ion beam settings) using e-beam evaporated Ti. TiO2 high-index layers were then paired with SiO2 low-index layers in a quarter-wave-type coating to achieve a broader high-reflection bandwidth compared to the same coating composed of HfO2/SiO2 layer pairs. However, the improved bandwidth exhibited by the TiO2/SiO2 coating is associated with lower laser damage threshold. To improve the laser damage resistance of the TiO2/SiO2 coating, we also created four coatings where HfO2 replaced some of the outer TiO2 layers. We present the laser damage results of these coatings to understand the trade-offs between good laser damage resistance and high-reflection bandwidth using TiO2 and HfO2.
Optical Engineering | 2014
Ella Suzanne Field; John Curtis Bellum; Damon E. Kletecka
Abstract. We have examined how three different cleaning processes affect the laser-induced damage threshold (LIDT) of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. Coatings that received cleaning exhibited the highest LIDTs compared to coatings that were not cleaned. In some cases, there is nearly a twofold increase in the LIDT between the cleaned and uncleaned coatings (19.4 J/cm2 compared to 39.1 J/cm2). Higher LIDTs were realized after 4 months of aging. The most effective cleaning process involved washing the coated surface with mild detergent, and then soaking the optic in a mixture of ethyl alcohol and deionized water. Also, the laser damage results indicate that the presence of nonpropagating (NP) damage sites dominates the LIDTs of almost every optic, despite the cleaning process used. NP damage sites can be attributed to defects such as nodules in the coating or surface contamination, which suggests that pursuing further improvements to the deposition or cleaning processes are worthwhile to achieve even higher LIDTs.
Laser-Induced Damage in Optical Materials: 2015 | 2015
John Curtis Bellum; Ella Suzanne Field; Damon E. Kletecka; Patrick K. Rambo; I. C. Smith
We have designed a dichroic beam combiner coating consisting of 11 HfO2/SiO2 layer pairs deposited on a large fused silica substrate. The coating provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for light at 22.5° angle of incidence (AOI) in air in S polarization (Spol). The coatings design is based on layers of near half-wave optical thickness in the design space for stable HT at 527 nm, with layer modifications that provide HR at 1054 nm while preserving HT at 527 nm. Its implementation in the 527 nm/1054 nm dual wavelength beam combiner arrangement has two options, with each option requiring one or the other of the high intensity beams to be incident on the dichroic coating from within the substrate (from glass). We show that there are differences between the two options with respect to the laser-induced damage threshold (LIDT) properties of the coating, and analyze the differences in terms of the 527 nm and 1054 nm E-field intensity behaviors for air → coating and glass → coating incidence. Our E-field analysis indicates that LIDTs for air → coating incidence should be higher than for glass → coating incidence. LIDT measurements for Spol at the use AOI with ns pulses at 532 nm and 1064 nm confirm this analysis with the LIDTs for glass → coating incidence being about half those for air → coating incidence at both wavelengths. These LIDT results and the E-field analysis clearly indicate that the best beam combiner option is the one for which the high intensity 527 nm beam is incident on the coating from air and the 1054 nm high intensity beam is incident on the coating from glass.
Optical Engineering | 2016
Ella Suzanne Field; John Curtis Bellum; Damon E. Kletecka
Abstract. Broad bandwidth coatings allow angle of incidence flexibility and accommodate spectral shifts due to aging and water absorption. Higher refractive index materials in optical coatings, such as TiO2, Nb2O5, and Ta2O5, can be used to achieve broader bandwidths compared to coatings that contain HfO2 high index layers. We have identified the deposition settings that lead to the highest index, lowest absorption layers of TiO2, Nb2O5, and Ta2O5, via e-beam evaporation using ion-assisted deposition. We paired these high index materials with SiO2 as the low index material to create broad bandwidth high reflection coatings centered at 1054 nm for 45 deg angle of incidence and P polarization. High reflection bandwidths as large as 231 nm were realized. Laser damage tests of these coatings using the ISO 11254 and NIF-MEL protocols are presented, which revealed that the Ta2O5/SiO2 coating exhibits the highest resistance to laser damage, at the expense of lower bandwidth compared to the TiO2/SiO2 and Nb2O5/SiO2 coatings.
Optical Engineering | 2016
Ella Suzanne Field; John Curtis Bellum; Damon E. Kletecka
Abstract. When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO2 and SiO2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm2.
Optical Engineering | 2016
John Curtis Bellum; Trevor Winstone; Laurent Lamaignère; Martin Sozet; Mark Kimmel; Patrick K. Rambo; Ella Suzanne Field; Damon E. Kletecka
Abstract. We designed an optical coating based on TiO2/SiO2 layer pairs for broad bandwidth high reflection (BBHR) at 45-deg angle of incidence (AOI), P polarization of femtosecond (fs) laser pulses of 900-nm center wavelength, and produced the coatings in Sandia’s large optics coater by reactive, ion-assisted e-beam evaporation. This paper reports on laser-induced damage threshold (LIDT) tests of these coatings. The broad HR bands of BBHR coatings pose challenges to LIDT tests. An ideal test would be in a vacuum environment appropriate to a high energy, fs-pulse, petawatt-class laser, with pulses identical to its fs pulses. Short of this would be tests over portions of the HR band using nanosecond or sub-picosecond pulses produced by tunable lasers. Such tests could, e.g., sample 10-nm-wide wavelength intervals with center wavelengths tunable over the broad HR band. Alternatively, the coating’s HR band could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to the coating absorbing moisture under ambient conditions. We had LIDT tests performed on the BBHR coatings at selected AOIs to gain insight into their laser damage properties and analyze how the results of the different LIDT tests compare.
Optical Engineering | 2016
John Curtis Bellum; Ella Suzanne Field; Damon E. Kletecka; Patrick K. Rambo; I. C. Smith
Abstract. We designed a dichroic beam combiner coating with 11 HfO2/SiO2 layer pairs and deposited it on a large substrate. It provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for a 22.5-deg angle of incidence (AOI), S polarization (Spol), and uses near half-wave layer thicknesses for HT at 527 nm, modified for HR at 1054 nm. The two options for the beam combiner each require that a high intensity beam be incident on the coating from within the substrate (from glass). We analyze the laser-induced damage threshold (LIDT) differences between the two options in terms of the 527- and 1054-nm E-field behaviors for air → coating and glass → coating incidences. This indicates that LIDTs should be higher for air → coating than for glass → coating incidence. LIDT tests at the use AOI, Spol with ns pulses at 532 and 1064 nm confirm this, with glass → coating LIDTs about half that of air → coating LIDTs. These results clearly indicate that the best beam combiner option is for the high intensity 527 and 1054 nm beams to be incident on the coating from air and glass, respectively.
Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers | 2015
John Curtis Bellum; Trevor Winstone; Laurent Lamaignère; Martin Sozet; Mark Kimmel; Patrick K. Rambo; Ella Suzanne Field; Damon E. Kletecka
We have designed and produced an optical coating suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of petawatt (PW) class fs laser pulses of ~ 900 nm center wavelength. We have produced such BBHR coatings consisting of TiO2/SiO2 layer pairs deposited by ion assisted e-beam evaporation using the large optics coater at Sandia National Laboratories. This paper focuses on laser-induced damage threshold (LIDT) tests of these coatings. LIDT is difficult to measure for such coatings due to the broad range of wavelengths over which they can operate. An ideal test would be in the vacuum environment of the fs-pulse PW use laser using fs pulses identical to of the PW laser. Short of this ideal testing would be tests over portions of the HR band of the BBHR coating using ns or sub-ps pulses produced by tunable lasers. Such tests could be over ~ 10 nm wide wavelength intervals whose center wavelengths could be tuned over the BBHR coating’s operational band. Alternatively, the HR band of the BBHR coating could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to absorbed moisture by the coating under ambient conditions. We conduct LIDT tests on the BBHR coatings at selected AOIs to gain insight into the coatings’ laser damage properties, and analyze how the results of the different LIDT tests compare.
IEEE\/ASME Journal of Microelectromechanical Systems | 2014
Emmanuel F. C. Chimamkpam; Ella Suzanne Field; Akintunde Ibitayo Akinwande; Luis Fernando Velasquez-Garcia
We report the design, fabrication, and characterization of miniaturized, flush-mounted Langmuir probe arrays for RF diagnosis of plasmas in the HF to microwave range of frequencies. We developed probes of radii ≥125 μm by electroless nickel metallization of ultrasonically drilled through-substrate vias. Planar arrays with as many as 25 probes spaced 1.6 mm apart (39 probes/cm2) in Pyrex, silicon carbide, and alumina substrates were produced. The sensor system was built to have a frequency response between 2 MHz and 3 GHz, and a probe impedance greater than or within close range of the plasma sheath impedance for plasma densities ≥1016 m-3. We characterized a self-biasing nickel probe part of a 2×2 array with alumina substrate using a high-density magnetized helicon plasma source; we found that the measurement of the plasma potential from the MEMS probe compares well with independent measurements using a hot emissive probe and an ion sensitive probe. The sensor technology can be used to monitor plasma-based manufacturing systems, plasma-based energy generation systems, and as on-board plasma diagnostics in spacecraft including nanosatellites.
Laser-Induced Damage in Optical Materials: 2013 | 2013
Ella Suzanne Field; John Curtis Bellum; Damon E. Kletecka
We develop and characterize high index of refraction thin films by e-beam evaporation of Ti3O5, Ta2O5 and Nb2O5 in reactive, ion-assisted deposition processes. We then deposit broad bandwidth high reflection (HR) coatings based on quarter-wave stacks of these high index layers alternating with SiO2 low index layers. The HR band is centered at 1054 nm and designed for 45o angle of incidence. We compare the laser induced damage thresholds of these coatings in order to explore tradeoffs between their laser damage properties and HR bandwidths.