Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elliot T. Berkman is active.

Publication


Featured researches published by Elliot T. Berkman.


Biological Psychiatry | 2010

Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward.

Naomi I. Eisenberger; Elliot T. Berkman; Tristen K. Inagaki; Lian T. Rameson; Nehjla M. Mashal; Michael R. Irwin

BACKGROUND Although inflammatory activity is known to play a role in depression, no work has examined whether experimentally induced systemic inflammation alters neural activity that is associated with anhedonia, a key diagnostic symptom of depression. To investigate this, we examined the effect of an experimental inflammatory challenge on the neural correlates of anhedonia-namely, reduced ventral striatum (VS) activity to reward cues. We also examined whether this altered neural activity related to inflammatory-induced increases in depressed mood. METHODS Participants (n = 39) were randomly assigned to receive either placebo or low-dose endotoxin, which increases proinflammatory cytokine levels in a safe manner. Cytokine levels were repeatedly assessed through hourly blood draws; self-reported and observer-rated depressed mood were assessed regularly as well. Two hours after drug administration, neural activity was recorded as participants completed a task in which they anticipated monetary rewards. RESULTS Results demonstrated that subjects exposed to endotoxin, compared with placebo, showed greater increases in self-reported and observer-rated depressed mood over time, as well as significant reductions in VS activity to monetary reward cues. Moreover, the relationship between exposure to inflammatory challenge and increases in observer-rated depressed mood was mediated by between-group differences in VS activity to anticipated reward. CONCLUSIONS The data reported here show, for the first time, that inflammation alters reward-related neural responding in humans and that these reward-related neural responses mediate the effects of inflammation on depressed mood. As such, these findings have implications for understanding risk of depression in persons with underlying inflammation.


The Journal of Neuroscience | 2010

Predicting Persuasion-Induced Behavior Change From the Brain

Emily B. Falk; Elliot T. Berkman; Traci Mann; Brittany Harrison; Matthew D. Lieberman

Although persuasive messages often alter peoples self-reported attitudes and intentions to perform behaviors, these self-reports do not necessarily predict behavior change. We demonstrate that neural responses to persuasive messages can predict variability in behavior change in the subsequent week. Specifically, an a priori region of interest (ROI) in medial prefrontal cortex (MPFC) was reliably associated with behavior change (r = 0.49, p < 0.05). Additionally, an iterative cross-validation approach using activity in this MPFC ROI predicted an average 23% of the variance in behavior change beyond the variance predicted by self-reported attitudes and intentions. Thus, neural signals can predict behavioral changes that are not predicted from self-reported attitudes and intentions alone. Additionally, this is the first functional magnetic resonance imaging study to demonstrate that a neural signal can predict complex real world behavior days in advance.


Health Psychology | 2011

Neural Activity During Health Messaging Predicts Reductions in Smoking Above and Beyond Self-Report

Emily B. Falk; Elliot T. Berkman; Danielle Whalen; Matthew D. Lieberman

OBJECTIVE The current study tested whether neural activity in response to messages designed to help smokers quit could predict smoking reduction, above and beyond self-report. DESIGN Using neural activity in an a priori region of interest (a subregion of medial prefrontal cortex [MPFC]), in response to ads designed to help smokers quit smoking, we prospectively predicted reductions in smoking in a community sample of smokers (N = 28) who were attempting to quit smoking. Smoking was assessed via expired carbon monoxide (CO; a biological measure of recent smoking) at baseline and 1 month following exposure to professionally developed quitting ads. RESULTS A positive relationship was observed between activity in the MPFC region of interest and successful quitting (increased activity in MPFC was associated with a greater decrease in expired CO). The addition of neural activity to a model predicting changes in CO from self-reported intentions, self-efficacy, and ability to relate to the messages significantly improved model fit, doubling the variance explained (R²self-report = .15, R²self-report + neural activity = .35, R²change = .20). CONCLUSION Neural activity is a useful complement to existing self-report measures. In this investigation, we extend prior work predicting behavior change based on neural activity in response to persuasive media to an important health domain and discuss potential psychological interpretations of the brain-behavior link. Our results support a novel use of neuroimaging technology for understanding the psychology of behavior change and facilitating health promotion.


Psychological Science | 2012

From Neural Responses to Population Behavior Neural Focus Group Predicts Population-Level Media Effects

Emily B. Falk; Elliot T. Berkman; Matthew D. Lieberman

Can neural responses of a small group of individuals predict the behavior of large-scale populations? In this investigation, brain activations were recorded while smokers viewed three different television campaigns promoting the National Cancer Institute’s telephone hotline to help smokers quit (1-800-QUIT-NOW). The smokers also provided self-report predictions of the campaigns’ relative effectiveness. Population measures of the success of each campaign were computed by comparing call volume to 1-800-QUIT-NOW in the month before and the month after the launch of each campaign. This approach allowed us to directly compare the predictive value of self-reports with neural predictors of message effectiveness. Neural activity in a medial prefrontal region of interest, previously associated with individual behavior change, predicted the population response, whereas self-report judgments did not. This finding suggests a novel way of connecting neural signals to population responses that has not been previously demonstrated and provides information that may be difficult to obtain otherwise.


Psychological Science | 2011

In the Trenches of Real-World Self-Control Neural Correlates of Breaking the Link Between Craving and Smoking

Elliot T. Berkman; Emily B. Falk; Matthew D. Lieberman

Successful goal pursuit involves repeatedly engaging self-control against temptations or distractions that arise along the way. Laboratory studies have identified the brain systems recruited during isolated instances of self-control, and ecological studies have linked self-control capacity to goal outcomes. However, no study has identified the neural systems of everyday self-control during long-term goal pursuit. The present study integrated neuroimaging and experience-sampling methods to investigate the brain systems of successful self-control among smokers attempting to quit. A sample of 27 cigarette smokers completed a go/no-go task during functional magnetic resonance imaging before they attempted to quit smoking and then reported everyday self-control using experience sampling eight times daily for 3 weeks while they attempted to quit. Increased activation in right inferior frontal gyrus, pre-supplementary motor area, and basal ganglia regions of interest during response inhibition at baseline was associated with an attenuated association between cravings and subsequent smoking. These findings support the ecological validity of neurocognitive tasks as indices of everyday response inhibition.


Current Directions in Psychological Science | 2013

Beyond Brain Mapping: Using Neural Measures to Predict Real-World Outcomes

Elliot T. Berkman; Emily B. Falk

One goal of social science in general, and of psychology in particular, is to understand and predict human behavior. Psychologists have traditionally used self-report measures and performance on laboratory tasks to achieve this end. However, these measures are limited in their ability to predict behavior in certain contexts. We argue that current neuroscientific knowledge has reached a point where it can complement other existing psychological measures in predicting behavior and other important outcomes. This brain-as-predictor approach integrates traditional neuroimaging methods with measures of behavioral outcomes that extend beyond the immediate experimental session. Previously, most neuroimaging experiments focused on understanding basic psychological processes that could be directly observed in the laboratory. However, recent experiments have demonstrated that brain measures can predict outcomes (e.g., purchasing decisions, clinical outcomes) over longer timescales in ways that go beyond what was previously possible with self-report data alone. This approach can be used to reveal the connections between neural activity in laboratory contexts and longer-term, ecologically valid outcomes. We describe this approach and discuss its potential theoretical implications. We also review recent examples of studies that have used this approach, discuss methodological considerations, and provide specific guidelines for using it in future research.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Evidence for social working memory from a parametric functional MRI study

Meghan L. Meyer; Robert P. Spunt; Elliot T. Berkman; Shelley E. Taylor; Matthew D. Lieberman

Keeping track of various amounts of social cognitive information, including peoples mental states, traits, and relationships, is fundamental to navigating social interactions. However, to date, no research has examined which brain regions support variable amounts of social information processing (“social load”). We developed a social working memory paradigm to examine the brain networks sensitive to social load. Two networks showed linear increases in activation as a function of increasing social load: the medial frontoparietal regions implicated in social cognition and the lateral frontoparietal system implicated in nonsocial forms of working memory. Of these networks, only load-dependent medial frontoparietal activity was associated with individual differences in social cognitive ability (trait perspective-taking). Although past studies of nonsocial load have uniformly found medial frontoparietal activity decreases with increasing task demands, the current study demonstrates these regions do support increasing mental effort when such effort engages social cognition. Implications for the etiology of clinical disorders that implicate social functioning and potential interventions are discussed.


Social Cognitive and Affective Neuroscience | 2011

The neural basis of rationalization: cognitive dissonance reduction during decision-making

Johanna M. Jarcho; Elliot T. Berkman; Matthew D. Lieberman

People rationalize the choices they make when confronted with difficult decisions by claiming they never wanted the option they did not choose. Behavioral studies on cognitive dissonance provide evidence for decision-induced attitude change, but these studies cannot fully uncover the mechanisms driving the attitude change because only pre- and post-decision attitudes are measured, rather than the process of change itself. In the first fMRI study to examine the decision phase in a decision-based cognitive dissonance paradigm, we observed that increased activity in right-inferior frontal gyrus, medial fronto-parietal regions and ventral striatum, and decreased activity in anterior insula were associated with subsequent decision-related attitude change. These findings suggest the characteristic rationalization processes that are associated with decision-making may be engaged very quickly at the moment of the decision, without extended deliberation and may involve reappraisal-like emotion regulation processes.


Journal of Cognitive Neuroscience | 2010

Approaching the bad and avoiding the good: Lateral prefrontal cortical asymmetry distinguishes between action and valence

Elliot T. Berkman; Matthew D. Lieberman

Goal pursuit in humans sometimes involves approaching unpleasant and avoiding pleasant stimuli, such as when a dieter chooses to eat vegetables (although he does not like them) instead of doughnuts (which he greatly prefers). Previous neuroscience investigations have established a left–right prefrontal asymmetry between approaching pleasant and avoiding unpleasant stimuli, but these investigations typically do not untangle the roles of action motivation (approach vs. avoidance) and stimulus valence (pleasant vs. unpleasant) in this asymmetry. Additionally, studies on asymmetry have been conducted almost exclusively using electroencephalography and have been difficult to replicate using functional magnetic resonance imaging (fMRI). The present fMRI study uses a novel goal pursuit task that separates action motivation from stimulus valence and a region-of-interest analysis approach to address these limitations. Results suggest that prefrontal asymmetry is associated with action motivation and not with stimulus valence. Specifically, there was increased left (vs. right) activation in dorsolateral prefrontal cortex during approach (vs. avoidance) actions regardless of the stimulus valence, but no such effect was observed for pleasant compared to unpleasant stimuli. This asymmetry effect during approach–avoidance action motivations occurred in the dorsolateral but not orbito-frontal aspects of prefrontal cortex. Also, individual differences in approach–avoidance motivation moderated the effect such that increasing trait approach motivation was associated with greater left-sided asymmetry during approach actions (regardless of the stimulus valence). Together, these results support the notion that prefrontal asymmetry is associated with action motivation regardless of stimulus valence and, as such, might be linked with goal pursuit processes more broadly.


Social Cognitive and Affective Neuroscience | 2013

Neural correlates of focused attention during a brief mindfulness induction

Janna A. Dickenson; Elliot T. Berkman; Joanna J. Arch; Matthew D. Lieberman

Mindfulness meditation-the practice of attending to present moment experience and allowing emotions and thoughts to pass without judgment-has shown to be beneficial in clinical populations across diverse outcomes. However, the basic neural mechanisms by which mindfulness operates and relates to everyday outcomes in novices remain unexplored. Focused attention is a common mindfulness induction where practitioners focus on specific physical sensations, typically the breath. The present study explores the neural mechanisms of this common mindfulness induction among novice practitioners. Healthy novice participants completed a brief task with both mindful attention [focused breathing (FB)] and control (unfocused attention) conditions during functional magnetic resonance imaging (fMRI). Relative to the control condition, FB recruited an attention network including parietal and prefrontal structures and trait-level mindfulness during this comparison also correlated with parietal activation. Results suggest that the neural mechanisms of a brief mindfulness induction are related to attention processes in novices and that trait mindfulness positively moderates this activation.

Collaboration


Dive into the Elliot T. Berkman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily B. Falk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge