Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elodie Dumont is active.

Publication


Featured researches published by Elodie Dumont.


Talanta | 2013

Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: from development to method validation.

C. De Bleye; Elodie Dumont; Eric Rozet; Pierre-Yves Sacre; Pierre-François Chavez; Lauranne Netchacovitch; Géraldine Piel; Ph. Hubert; Eric Ziemons

A surface enhanced Raman scattering (SERS) method able to quantify 4-aminophenol in a pharmaceutical formulation based on acetaminophen, also called paracetamol, was developed and, for the first time, successfully validated. In this context, silver nanoparticles were synthesized according to the method described by Lee-Meisel and used as SERS substrate. The repeatability of the silver colloid synthesis was tested using different methods to characterize the size and the zeta potential of silver nanoparticles freshly synthesized. To optimize the SERS samples preparation, a design of experiments implicating concentrations of citrate-reduced silver nanoparticles and aggregating agent was performed in order to maximize the Raman signal enhancement. Finally, an approach based on tolerance intervals and accuracy profiles was applied in order to thoroughly validate the method in a range of concentrations comprised from 3 to 15 µg mL(-1) using normalized band intensities. The standard addition method was selected as method calibration. Therefore, measurements were carried out on 4-aminophenol spiked solutions of the pharmaceutical formulation. Despite the well-known stability and reproducibility problems of SERS, the validation was performed using two operators and five batches of nanoparticles, one for each validation day.


Journal of Pharmaceutical and Biomedical Analysis | 2014

Development of a quantitative approach using surface-enhanced Raman chemical imaging: First step for the determination of an impurity in a pharmaceutical model

C. De Bleye; Pierre-Yves Sacre; Elodie Dumont; Lauranne Netchacovitch; Pierre-François Chavez; Géraldine Piel; Pierre Lebrun; Ph. Hubert; Eric Ziemons

This publication reports, for the first time, the development of a quantitative approach using surface-enhanced Raman chemical imaging (SER-CI). A pharmaceutical model presented as tablets based on paracetamol, which is the most sold drug around the world, was used to develop this approach. 4-Aminophenol is the main impurity of paracetamol and is actively researched in pharmaceutical formulations because of its toxicity. As its concentration is generally very low (<0.1%, w/w), conventional Raman chemical imaging cannot be used. In this context, a SER-CI method was developed to quantify 4-aminophenol assessing a limit of quantification below its limit of specification of 1000 ppm. Citrate-reduced silver nanoparticles were used as SERS substrate and these nanoparticles were functionalized using 1-butanethiol. Different ways to cover the tablets surface by butanethiol-functionalized silver nanoparticles were tested and a homogeneity study of the silver nanoparticles covering was realized. This homogeneity study was performed in order to choose the best way to cover the surface of tablets by silver colloid. Afterwards, the optimization of the SER-CI approach was necessary and different spectral intensity normalizations were tested. Finally, a quantitative approach using SER-CI was developed enabling to quantify 4-aminophenol from 0.025% to 0.2% in paracetamol tablets. This quantitative approach was tested on two different series of tablets using different batches of silver nanoparticles.


International Journal of Pharmaceutics | 2017

Development of an analytical method for crystalline content determination in amorphous solid dispersions produced by Hot-Melt Extrusion using transmission Raman spectroscopy: A feasibility study.

Lauranne Netchacovitch; Elodie Dumont; Johan Cailletaud; Justine Thiry; C. De Bleye; Pierre-Yves Sacre; M. Boiret; Brigitte Evrard; Ph. Hubert; Eric Ziemons

The development of a quantitative method determining the crystalline percentage in an amorphous solid dispersion is of great interest in the pharmaceutical field. Indeed, the crystalline Active Pharmaceutical Ingredient transformation into its amorphous state is increasingly used as it enhances the solubility and bioavailability of Biopharmaceutical Classification System class II drugs. One way to produce amorphous solid dispersions is the Hot-Melt Extrusion (HME) process. This study reported the development and the comparison of the analytical performances of two techniques, based on backscattering and transmission Raman spectroscopy, determining the crystalline remaining content in amorphous solid dispersions produced by HME. Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were performed on preprocessed data and tended towards the same conclusions: for the backscattering Raman results, the use of the DuoScan™ mode improved the PCA and PLS results, due to a larger analyzed sampling volume. For the transmission Raman results, the determination of low crystalline percentages was possible and the best regression model was obtained using this technique. Indeed, the latter acquired spectra through the whole sample volume, in contrast with the previous surface analyses performed using the backscattering mode. This study consequently highlighted the importance of the analyzed sampling volume.


Analytica Chimica Acta | 2015

A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

C. De Bleye; Elodie Dumont; Cédric Hubert; Pierre-Yves Sacre; Lauranne Netchacovitch; Pierre-François Chavez; Ph. Hubert; Eric Ziemons

Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L(-1) for BPA and BPB and from 5 to 100 μg L(-1) for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples.


Bioanalysis | 2016

From Near-Infrared and Raman to Surface-Enhanced Raman Spectroscopy: Progress, Limitations, Perspectives in Bioanalysis

Elodie Dumont; Charlotte De Bleye; Pierre-Yves Sacre; Lauranne Netchacovitch; Philippe Hubert; Eric Ziemons

Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.


Journal of Pharmaceutical and Biomedical Analysis | 2018

Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field

Johan Cailletaud; C. De Bleye; Elodie Dumont; Pierre-Yves Sacre; Lauranne Netchacovitch; Yoann Gut; M. Boiret; Yves-Michel Ginot; Ph. Hubert; Eric Ziemons

Graphical abstract Figure. No Caption available. HighlightsSERS is about to become a relevant analytical tool in pharmaceutical field.The review focuses of the different steps to develop a SERS quantitative method.Several pharmaceutical applications of SERS are reviewed.SERS analyses on simple and complex pharmaceutical matrices are summarized.SERS method validation and chemical imaging are in particular broached. ABSTRACT Surface‐enhanced Raman spectroscopy (SERS) is a sensitive analytical tool used in the pharmaceutical field in recent years. SERS keeps all the advantages of classical Raman spectroscopy while being is more sensitive allowing its use for the detection and the quantification of low‐dose substances contained in pharmaceutical samples. However, the analytical performance of SERS is limited due to the difficulty to implement a quantitative methodology correctly validated. Nevertheless, some studies reported the development of SERS quantitative methods especially in pharmaceutical approaches. In this context, this review presents the main concepts of the SERS technique. The different steps that need to be applied to develop a SERS quantitative method are also deeply described. The last part of the present manuscript gives a critical overview of the different SERS pharmaceutical applications that were developed for a non‐exhaustive list of pharmaceutical compounds with the aim to highlights the validation criteria for each application.


Talanta | 2017

Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process

Lauranne Netchacovitch; Justine Thiry; C. De Bleye; Elodie Dumont; Johan Cailletaud; Pierre-Yves Sacre; Brigitte Evrard; Ph. Hubert; Eric Ziemons

Since the Food and Drug Administration (FDA) published a guidance based on the Process Analytical Technology (PAT) approach, real-time analyses during manufacturing processes are in real expansion. In this study, in-line Raman spectroscopic analyses were performed during a Hot-Melt Extrusion (HME) process to determine the Active Pharmaceutical Ingredient (API) content in real-time. The method was validated based on a univariate and a multivariate approach and the analytical performances of the obtained models were compared. Moreover, on one hand, in-line data were correlated with the real API concentration present in the sample quantified by a previously validated off-line confocal Raman microspectroscopic method. On the other hand, in-line data were also treated in function of the concentration based on the weighing of the components in the prepared mixture. The importance of developing quantitative methods based on the use of a reference method was thus highlighted. The method was validated according to the total error approach fixing the acceptance limits at ±15% and the α risk at ±5%. This method reaches the requirements of the European Pharmacopeia norms for the uniformity of content of single-dose preparations. The validation proves that future results will be in the acceptance limits with a previously defined probability. Finally, the in-line validated method was compared with the off-line one to demonstrate its ability to be used in routine analyses.


Talanta | 2018

Development of a SERS strategy to overcome the nanoparticle stabilisation effect in serum-containing samples: Application to the quantification of dopamine in the culture medium of PC-12 cells

Elodie Dumont; C. De Bleye; Johan Cailletaud; Pierre-Yves Sacre; P.B. Van Lerberghe; Bernard Rogister; G.A. Rance; Jonathan W. Aylott; Ph. Hubert; Eric Ziemons

The analysis of serum samples by surface-enhanced Raman spectroscopy (SERS) has gained ground over the last few years. However, the stabilisation of colloids by the proteins contained in these samples has restricted their use in common practice, unless antibodies or aptamers are used. Therefore, this work was dedicated to the development of a SERS methodology allowing the analysis of serum samples in a simple and easy-to-implement way. This approach was based on the pre-aggregation of the colloid with a salt solution. Gold nanoparticles (AuNPs) were used as the SERS substrate and, owing to its physiopathological importance, dopamine was chosen as a model to implement the SERS approach. The presence of this neurotransmitter could be determined in the concentration range 0.5-50 ppm (2.64-264 µM) in the culture medium of PC-12 cells, with a R2 of 0.9874, and at even lower concentrations (0.25 ppm, 1.32 µM) in another matrix containing fewer proteins. Moreover, the effect of calcium and potassium on the dopamine exocytosis from PC-12 cells was studied. Calcium was shown to have a predominant and dose-dependant effect. Finally, PC-12 cells were exposed to dexamethasone in order to increase their biosynthesis and release of dopamine. This increase was monitored with the developed SERS approach.


Talanta | 2016

Monitoring of anatabine release by methyl jasmonate elicited BY-2 cells using surface-enhanced Raman scattering

C. De Bleye; Elodie Dumont; Amandine Dispas; Cédric Hubert; Pierre-Yves Sacre; Lauranne Netchacovitch; B. De Muyt; Claire Kevers; Jacques Dommes; Ph. Hubert; Eric Ziemons

A new application of surface-enhanced Raman scattering (SERS) in the field of plant material analysis is proposed in this study. The aim was to monitor the release of anatabine by methyl jasmonate (MeJa) elicited Bright Yellow-2 (BY-2) cells. Gold nanoparticles (AuNps) were used as SERS substrate. The first step was to study the SERS activity of anatabine in a complex matrix comprising the culture medium and BY-2 cells. The second step was the calibration. This one was successfully performed directly in the culture medium in order to take into account the matrix effect, by spiking the medium with different concentrations of anatabine, leading to solutions ranging from 250 to 5000µgL(-1). A univariate analysis was performed, the intensity of a band situated at 1028cm(-1), related to anatabine, was plotted against the anatabine concentration. A linear relationship was observed with a R(2) of 0.9951. During the monitoring study, after the MeJa elicitation, samples were collected from the culture medium containing BY-2 cells at 0, 24h, 48h, 72h and 96h and were analysed using SERS. Finally, the amount of anatabine released in the culture medium was determined using the response function, reaching a plateau after 72h of 82µg of anatabine released/g of fresh weight (FW) MeJa elicited BY-2 cells.


Talanta | 2018

Towards a spray-coating method for the detection of low-dose compounds in pharmaceutical tablets using surface-enhanced Raman chemical imaging (SER-CI)

Johan Cailletaud; Charlotte De Bleye; Elodie Dumont; Pierre-Yves Sacre; Yoann Gut; Laurent Bultel; Yves-Michel Ginot; Philippe Hubert; Eric Ziemons

Surface-enhanced Raman chemical imaging (SER-CI) is a highly sensitive analytical tool recently used in the pharmaceutical field owing to the possibility to obtain high sensitivity along with spatial information. However, the covering method of the pharmaceutical samples such as tablets with metallic nanoparticles is a major issue for SER-CI analyses due to the difficulty to obtain a homogeneous covering of tablet surface with the SERS substrates. In this context, a spray-coating method was proposed in order to fully exploit the potential of SER-CI. A homemade apparatus has been developed from an electrospray ionization (ESI) probe in order to cover the pharmaceutical tablets with the colloidal suspension in a homogeneous way. The silver substrate was pulled through the airbrush by a syringe pump which was then nebulized into small droplets due to the contact of the solution with the gas flow turbulence. A robust optimization of the process was carried out by adjusting experimental parameters such as the liquid flow rate and the spraying time. Besides, the performances of this spraying technique were compared with two others covering methods found in the literature which are drop casting and absorption coating. A homogeneity study, conducted by SER-CI and matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) applied to the different covering techniques was performed. The influence of the metallic nanoparticles deposit on soluble compounds was also investigated in order to highlight the advantages of using this new spray coating approach.

Collaboration


Dive into the Elodie Dumont's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge