Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauranne Netchacovitch is active.

Publication


Featured researches published by Lauranne Netchacovitch.


Journal of Pharmaceutical and Biomedical Analysis | 2014

Data processing of vibrational chemical imaging for pharmaceutical applications.

Pierre-Yves Sacre; C. De Bleye; Pierre-François Chavez; Lauranne Netchacovitch; Ph. Hubert; Eric Ziemons

Vibrational spectroscopy (MIR, NIR and Raman) based hyperspectral imaging is one of the most powerful tools to analyze pharmaceutical preparation. Indeed, it combines the advantages of vibrational spectroscopy to imaging techniques and allows therefore the visualization of distribution of compounds or crystallization processes. However, these techniques provide a huge amount of data that must be processed to extract the relevant information. This review presents fundamental concepts of hyperspectral imaging, the basic theory of the most used chemometric tools used to pre-process, process and post-process the generated data. The last part of the present paper focuses on pharmaceutical applications of hyperspectral imaging and highlights the data processing approaches to enable the reader making the best choice among the different tools available.


Analytica Chimica Acta | 2014

A new criterion to assess distributional homogeneity in hyperspectral images of solid pharmaceutical dosage forms

Pierre-Yves Sacre; Pierre Lebrun; Pierre-François Chavez; Charlotte De Bleye; Lauranne Netchacovitch; Eric Rozet; Régis Klinkenberg; Bruno Streel; Philippe Hubert; Eric Ziemons

During galenic formulation development, homogeneity of distribution is a critical parameter to check since it may influence activity and safety of the drug. Raman hyperspectral imaging is a technique of choice for assessing the distributional homogeneity of compounds of interest. Indeed, the combination of both spectroscopic and spatial information provides a detailed knowledge of chemical composition and component distribution. Actually, most authors assess homogeneity using parameters of the histogram of intensities (e.g. mean, skewness and kurtosis). However, this approach does not take into account spatial information and loses the main advantage of imaging. To overcome this limitation, we propose a new criterion: Distributional Homogeneity Index (DHI). DHI has been tested on simulated maps and formulation development samples. The distribution maps of the samples were obtained without validated calibration model since different formulations were under investigation. The results obtained showed a linear relationship between content uniformity values and DHI values of distribution maps. Therefore, DHI methodology appears to be a suitable tool for the analysis of homogeneity of distribution maps even without calibration during formulation development.


Talanta | 2013

Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: from development to method validation.

C. De Bleye; Elodie Dumont; Eric Rozet; Pierre-Yves Sacre; Pierre-François Chavez; Lauranne Netchacovitch; Géraldine Piel; Ph. Hubert; Eric Ziemons

A surface enhanced Raman scattering (SERS) method able to quantify 4-aminophenol in a pharmaceutical formulation based on acetaminophen, also called paracetamol, was developed and, for the first time, successfully validated. In this context, silver nanoparticles were synthesized according to the method described by Lee-Meisel and used as SERS substrate. The repeatability of the silver colloid synthesis was tested using different methods to characterize the size and the zeta potential of silver nanoparticles freshly synthesized. To optimize the SERS samples preparation, a design of experiments implicating concentrations of citrate-reduced silver nanoparticles and aggregating agent was performed in order to maximize the Raman signal enhancement. Finally, an approach based on tolerance intervals and accuracy profiles was applied in order to thoroughly validate the method in a range of concentrations comprised from 3 to 15 µg mL(-1) using normalized band intensities. The standard addition method was selected as method calibration. Therefore, measurements were carried out on 4-aminophenol spiked solutions of the pharmaceutical formulation. Despite the well-known stability and reproducibility problems of SERS, the validation was performed using two operators and five batches of nanoparticles, one for each validation day.


International Journal of Pharmaceutics | 2016

Continuous Production of Itraconazole-based Solid Dispersions by Hot Melt Extrusion: Preformulation, Optimization and Design Space Determination.

Justine Thiry; Pierre Lebrun; Chloe Vinassa; Marine Adam; Lauranne Netchacovitch; Eric Ziemons; Philippe Hubert; Fabrice Krier; Brigitte Evrard

The purpose of this work was to increase the solubility and the dissolution rate of itraconazole, which was chosen as the model drug, by obtaining an amorphous solid dispersion by hot melt extrusion. Therefore, an initial preformulation study was conducted using differential scanning calorimetry, thermogravimetric analysis and Hansens solubility parameters in order to find polymers which would have the ability to form amorphous solid dispersions with itraconazole. Afterwards, the four polymers namely Kollidon® VA64, Kollidon® 12PF, Affinisol® HPMC and Soluplus®, that met the set criteria were used in hot melt extrusion along with 25wt.% of itraconazole. Differential scanning confirmed that all four polymers were able to amorphize itraconazole. A stability study was then conducted in order to see which polymer would keep itraconazole amorphous as long as possible. Soluplus® was chosen and, the formulation was fine-tuned by adding some excipients (AcDiSol®, sodium bicarbonate and poloxamer) during the hot melt extrusion process in order to increase the release rate of itraconazole. In parallel, the range limits of the hot melt extrusion process parameters were determined. A design of experiment was performed within the previously defined ranges in order to optimize simultaneously the formulation and the process parameters. The optimal formulation was the one containing 2.5wt.% of AcDiSol® produced at 155°C and 100rpm. When tested with a biphasic dissolution test, more than 80% of itraconazole was released in the organic phase after 8h. Moreover, this formulation showed the desired thermoformability value. From these results, the design space around the optimum was determined. It corresponds to the limits within which the process would give the optimized product. It was observed that a temperature between 155 and 170°C allowed a high flexibility on the screw speed, from about 75 to 130rpm.


Journal of Pharmaceutical and Biomedical Analysis | 2014

Development of a quantitative approach using surface-enhanced Raman chemical imaging: First step for the determination of an impurity in a pharmaceutical model

C. De Bleye; Pierre-Yves Sacre; Elodie Dumont; Lauranne Netchacovitch; Pierre-François Chavez; Géraldine Piel; Pierre Lebrun; Ph. Hubert; Eric Ziemons

This publication reports, for the first time, the development of a quantitative approach using surface-enhanced Raman chemical imaging (SER-CI). A pharmaceutical model presented as tablets based on paracetamol, which is the most sold drug around the world, was used to develop this approach. 4-Aminophenol is the main impurity of paracetamol and is actively researched in pharmaceutical formulations because of its toxicity. As its concentration is generally very low (<0.1%, w/w), conventional Raman chemical imaging cannot be used. In this context, a SER-CI method was developed to quantify 4-aminophenol assessing a limit of quantification below its limit of specification of 1000 ppm. Citrate-reduced silver nanoparticles were used as SERS substrate and these nanoparticles were functionalized using 1-butanethiol. Different ways to cover the tablets surface by butanethiol-functionalized silver nanoparticles were tested and a homogeneity study of the silver nanoparticles covering was realized. This homogeneity study was performed in order to choose the best way to cover the surface of tablets by silver colloid. Afterwards, the optimization of the SER-CI approach was necessary and different spectral intensity normalizations were tested. Finally, a quantitative approach using SER-CI was developed enabling to quantify 4-aminophenol from 0.025% to 0.2% in paracetamol tablets. This quantitative approach was tested on two different series of tablets using different batches of silver nanoparticles.


Talanta | 2015

Active content determination of pharmaceutical tablets using near infrared spectroscopy as Process Analytical Technology tool.

Pierre-François Chavez; Pierre-Yves Sacre; Charlotte De Bleye; Lauranne Netchacovitch; Jérôme Mantanus; Henri Motte; Martin Schubert; Philippe Hubert; Eric Ziemons

The aim of this study was to develop Near infrared (NIR) methods to determine the active content of non-coated pharmaceutical tablets manufactured from a proportional tablet formulation. These NIR methods intend to be used for the monitoring of the active content of tablets during the tableting process. Firstly, methods were developed in transmission and reflection modes to quantify the API content of the lowest dosage strength. Secondly, these methods were fully validated for a concentration range of 70-130% of the target active content using the accuracy profile approach based on β-expectation tolerance intervals. The model using the transmission mode showed a better ability to predict the right active content compared to the reflection one. However, the ability of the reflection mode to quantify the API content in the highest dosage strength was assessed. Furthermore, the NIR method based on the transmission mode was successfully used to monitor at-line the tablet active content during the tableting process, providing better insight of the API content during the process. This improvement of control of the product quality provided by this PAT method is thoroughly compliant with the Quality by Design (QbD) concept. Finally, the transfer of the transmission model from the off-line to an on-line spectrometer was efficiently investigated.


International Journal of Pharmaceutics | 2015

Optimization of a Pharmaceutical Tablet Formulation based on a Design Space Approach and using Vibrational Spectroscopy as PAT Tool

Pierre-François Chavez; Pierre Lebrun; Pierre-Yves Sacre; Charlotte De Bleye; Lauranne Netchacovitch; Serge Cuypers; Jérôme Mantanus; Henri Motte; Martin Schubert; Brigitte Evrard; Philippe Hubert; Eric Ziemons

The aim of the present study was to optimize a tablet formulation using a quality by design approach. The selected methodology was based on the variation of the filler grade, taking into account the particle size distribution (PSD) of active pharmaceutical ingredient (API) in order to improve five critical quality attributes (CQAs). Thus, a mixture design of experiments (DoE) was performed at pilot scale. The blending step was monitored using near infrared (NIR) spectroscopy as process analytical technology tool enabling real-time qualitative process monitoring. Furthermore, some tablets were analyzed by Raman imaging to evaluate the API distribution within the samples. Based on the DoE results, design spaces were computed using a risk-based Bayesian predictive approach to provide for each point of the experimental domain the expected probability to get the five CQAs jointly within the specifications in the future. Finally, the optimal conditions of the identified design space were successfully validated. In conclusion, a design space approach supported by NIR and Raman spectroscopy was able to define a blend that complies with the target product profile with a quantified guarantee or risk.


International Journal of Pharmaceutics | 2017

Development of an analytical method for crystalline content determination in amorphous solid dispersions produced by Hot-Melt Extrusion using transmission Raman spectroscopy: A feasibility study.

Lauranne Netchacovitch; Elodie Dumont; Johan Cailletaud; Justine Thiry; C. De Bleye; Pierre-Yves Sacre; M. Boiret; Brigitte Evrard; Ph. Hubert; Eric Ziemons

The development of a quantitative method determining the crystalline percentage in an amorphous solid dispersion is of great interest in the pharmaceutical field. Indeed, the crystalline Active Pharmaceutical Ingredient transformation into its amorphous state is increasingly used as it enhances the solubility and bioavailability of Biopharmaceutical Classification System class II drugs. One way to produce amorphous solid dispersions is the Hot-Melt Extrusion (HME) process. This study reported the development and the comparison of the analytical performances of two techniques, based on backscattering and transmission Raman spectroscopy, determining the crystalline remaining content in amorphous solid dispersions produced by HME. Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were performed on preprocessed data and tended towards the same conclusions: for the backscattering Raman results, the use of the DuoScan™ mode improved the PCA and PLS results, due to a larger analyzed sampling volume. For the transmission Raman results, the determination of low crystalline percentages was possible and the best regression model was obtained using this technique. Indeed, the latter acquired spectra through the whole sample volume, in contrast with the previous surface analyses performed using the backscattering mode. This study consequently highlighted the importance of the analyzed sampling volume.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Vibrational spectroscopy and microspectroscopy analyzing qualitatively and quantitatively pharmaceutical hot melt extrudates

Lauranne Netchacovitch; Justine Thiry; C. De Bleye; Pierre-François Chavez; Fabrice Krier; Pierre-Yves Sacre; Brigitte Evrard; Ph. Hubert; Eric Ziemons

Since the last decade, more and more Active Pharmaceutical Ingredient (API) candidates have poor water solubility inducing low bioavailability. These molecules belong to the Biopharmaceutical Classification System (BCS) classes II and IV. Thanks to Hot-Melt Extrusion (HME), it is possible to incorporate these candidates in pharmaceutical solid forms. Indeed, HME increases the solubility and the bioavailability of these drugs by encompassing them in a polymeric carrier and by forming solid dispersions. Moreover, in 2004, the FDAs guidance initiative promoted the usefulness of Process Analytical Technology (PAT) tools when developing a manufacturing process. Indeed, the main objective when developing a new pharmaceutical process is the product quality throughout the production chain. The trend is to follow this parameter in real-time in order to react immediately when there is a bias. Vibrational spectroscopic techniques, NIR and Raman, are useful to analyze processes in-line. Moreover, off-line Raman microspectroscopy is more and more used when developing new pharmaceutical processes or when analyzing optimized ones by combining the advantages of Raman spectroscopy and imaging. It is an interesting tool for homogeneity and spatial distribution studies. This review treats about spectroscopic techniques analyzing a HME process, as well off-line as in-line, presenting their advantages and their complementarities.


Analytica Chimica Acta | 2015

A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

C. De Bleye; Elodie Dumont; Cédric Hubert; Pierre-Yves Sacre; Lauranne Netchacovitch; Pierre-François Chavez; Ph. Hubert; Eric Ziemons

Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L(-1) for BPA and BPB and from 5 to 100 μg L(-1) for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples.

Collaboration


Dive into the Lauranne Netchacovitch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge