Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily B. Peters is active.

Publication


Featured researches published by Emily B. Peters.


Ecosystems | 2013

Influence of Disturbance on Temperate Forest Productivity

Emily B. Peters; Kirk R. Wythers; John B. Bradford; Peter B. Reich

Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.


Urban Ecosystems | 2010

Influence of seasonality and vegetation type on suburban microclimates

Emily B. Peters; Joseph P. McFadden

Urbanization is responsible for some of the fastest rates of land-use change around the world, with important consequences for local, regional, and global climate. Vegetation, which represents a significant proportion of many urban and suburban landscapes, can modify climate by altering local exchanges of heat, water vapor, and CO2. To determine how distinct urban forest communities vary in their microclimate effects over time, we measured stand-level leaf area index, soil temperature, infrared surface temperature, and soil water content over a complete growing season at 29 sites representing the five most common vegetation types in a suburban neighborhood of Minneapolis–Saint Paul, Minnesota. We found that seasonal patterns of soil and surface temperatures were controlled more by differences in stand-level leaf area index and tree cover than by plant functional type. Across the growing season, sites with high leaf area index had soil temperatures that were 7°C lower and surface temperatures that were 6°C lower than sites with low leaf area index. Site differences in mid-season soil temperature and turfgrass ground cover were best explained by leaf area index, whereas differences in mid-season surface temperature were best explained by percent tree cover. The significant cooling effects of urban tree canopies on soil temperature imply that seasonal changes in leaf area index may also modulate CO2 efflux from urban soils, a highly temperature-dependent process, and that this should be considered in calculations of total CO2 efflux for urban carbon budgets. Field-based estimates of percent tree cover were found to better predict mid-season leaf area index than satellite-derived estimates and consequently offer an approach to scale up urban biophysical properties.


Gen. Tech. Rep. NRS-129. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 229 p. | 2014

Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

Stephen D. Handler; Matthew J. Duveneck; Louis R. Iverson; Emily B. Peters; Robert M. Scheller; Kirk R. Wythers; Leslie A. Brandt; Patricia R. Butler; Maria K. Janowiak; Christopher W. Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Inés Ibáñez; Don Kuhr; Stephen N. Matthews; Jennifer Muladore; Knute J. Nadelhoffer; David Neumann

Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigans eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and impacts to forest ecosystems was considered in order to draw conclusions on climate change vulnerability. Upland spruce-fir forests were determined to be the most vulnerable, whereas oak associations and barrens were determined to be less vulnerable to projected changes in climate. Projected changes in climate and the associated ecosystem impacts and vulnerabilities will have important implications for economically valuable timber species, forest-dependent wildlife and plants, recreation, and long-range planning.


Gen. Tech. Rep. NRS-136. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 247 p. | 2014

Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project

Maria K. Janowiak; Louis R. Iverson; David J. Mladenoff; Emily B. Peters; Kirk R. Wythers; Weimin Xi; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Christopher W. Swanston; Linda Parker; Amy J. Amman; Brian Bogaczyk; Christine Handler; Ellen Lesch; Peter B. Reich; Stephen N. Matthews; Matthew P. Peters; Anantha M. Prasad; Sami Khanal; Feng Liu; Tara Bal; Dustin Bronson; Andrew J. Burton; Jim Ferris; Jon Fosgitt; Shawn Hagan; Erin Johnston; Evan S. Kane; Colleen Matula

Forest ecosystems across the Northwoods will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Laurentian Mixed Forest Province of northern Wisconsin and western Upper Michigan under a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and impacts to forest ecosystems was considered in order to assess vulnerability to climate change. Upland spruce-fir, lowland conifers, aspen-birch, lowland-riparian hardwoods, and red pine forests were determined to be the most vulnerable ecosystems. White pine and oak forests were perceived as less vulnerable to projected changes in climate. These projected changes in climate and the associated impacts and vulnerabilities will have important implications for economically valuable timber species, forest-dependent wildlife and plants, recreation, and long-term natural resource planning.


Journal of Geophysical Research | 2017

Sulfide Generated by Sulfate Reduction is a Primary Controller of the Occurrence of Wild Rice (Zizania palustris) in Shallow Aquatic Ecosystems

Amy Myrbo; E. B. Swain; Daniel R. Engstrom; J. K. Coleman Wasik; J. Brenner; M. Dykhuizen Shore; Emily B. Peters; G. Blaha

Field observations suggest that surface-water sulfate concentrations control the distribution of wild rice, an aquatic grass (Zizania palustris). However, hydroponic studies show that sulfate is not toxic to wild rice at even unrealistically high concentrations. To determine how sulfate might directly or indirectly affect wild rice, potential wild rice habitat was characterized for 64 chemical and physical variables in over 100 sites spanning a relatively steep climatic and geological gradient in Minnesota. Habitat suitability was assessed by comparing the occurrence of wild rice with the field variables, through binary logistic regression. This analysis demonstrated that sulfide in sediment porewater, generated by the microbial reduction of sulfate that diffuses or advects into the sediment, is the primary control of wild rice occurrence. Water temperature and water transparency independently control the suitability of habitat for wild rice. In addition to generating phytotoxic sulfide, sulfate reduction also supports anaerobic decomposition of organic matter, releasing nutrients that can compound the harm of direct sulfide toxicity. These results are important because they show that increases in sulfate loading to surface water can have multiple negative consequences for ecosystems, even though sulfate itself is relatively benign.


Journal of Geophysical Research | 2011

Seasonal contributions of vegetation types to suburban evapotranspiration

Emily B. Peters; Rebecca Hiller; Joseph P. McFadden


Journal of Geophysical Research | 2010

Biological and environmental controls on tree transpiration in a suburban landscape

Emily B. Peters; Joseph P. McFadden; Rebecca A. Montgomery


Journal of Geophysical Research | 2012

Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape

Emily B. Peters; Joseph P. McFadden


Canadian Journal of Forest Research | 2013

Potential climate change impacts on temperate forest ecosystem processes

Emily B. Peters; Kirk R. Wythers; Shuxia Zhang; John B. Bradford; Peter B. Reich


Urban Ecosystems | 2012

Potential impacts of emerald ash borer invasion on biogeochemical and water cycling in residential landscapes across a metropolitan region

Cinzia Fissore; Joseph P. McFadden; Kristen C. Nelson; Emily B. Peters; Sarah E. Hobbie; Jennifer Y. King; Lawrence A. Baker; Ina Jakobsdottir

Collaboration


Dive into the Emily B. Peters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Myrbo

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Engstrom

Science Museum of Minnesota

View shared research outputs
Top Co-Authors

Avatar

E. B. Swain

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

G. Blaha

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

J. K. Coleman Wasik

University of Wisconsin–River Falls

View shared research outputs
Top Co-Authors

Avatar

John B. Bradford

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge