Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily L. Que is active.

Publication


Featured researches published by Emily L. Que.


Chemical Reviews | 2008

Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging

Emily L. Que; Dylan W. Domaille; Christopher J. Chang

The brain is a singular organ of unique biological complexity that serves as the command center for cognitive and motor function. As such, this specialized system also possesses a unique chemical composition and reactivity at the molecular level. In this regard, two vital distinguishing features of the brain are its requirements for the highest concentrations of metal ions in the body and the highest per-weight consumption of body oxygen. In humans, the brain accounts for only 2% of total body mass but consumes 20% of the oxygen that is taken in through respiration. As a consequence of high oxygen demand and cell complexity, distinctly high metal levels pervade all regions of the brain and central nervous system. Structural roles for metal ions in the brain and the body include the stabilization of biomolecules in static (e.g., Mg2+ for nucleic acid folds, Zn2+ in zinc-finger transcription factors) or dynamic (e.g., Na+ and K+ in ion channels, Ca2+ in neuronal cell signaling) modes, and catalytic roles for brain metal ions are also numerous and often of special demand.


Nature Chemical Biology | 2008

Synthetic fluorescent sensors for studying the cell biology of metals

Dylan W. Domaille; Emily L. Que; Christopher J. Chang

Metals are essential for sustaining all forms of life, but alterations in their cellular homeostasis are connected to severe human disorders, including cancer, diabetes and neurodegenerative diseases. Fluorescent small molecules that respond to metal ions in the cell with appropriate selectivity and sensitivity offer the ability to probe physiological and pathological consequences of the cell biology of metals with spatial and temporal fidelity. Molecular imaging of normal and abnormal cellular metal ion pools using these new chemical tools provides a host of emerging opportunities for visualizing, in real time, aspects of metal accumulation, trafficking, and function or toxicity in living systems. This review presents a brief survey of available synthetic small-molecule sensor types for fluorescence detection of cellular metals.


Journal of the American Chemical Society | 2009

Copper-Responsive Magnetic Resonance Imaging Contrast Agents

Emily L. Que; Eliana Gianolio; Suzanne L. Baker; Audrey P. Wong; Silvio Aime; Christopher J. Chang

The design, synthesis, and evaluation of the Copper-Gad (CG) family, a new class of copper-activated magnetic resonance imaging (MRI) contrast agents, are presented. These indicators comprise a Gd(3+)-DO3A core coupled to various thioether-rich receptors for copper-induced relaxivity switching. In the absence of copper ions, inner-sphere water binding to the Gd(3+) chelate is restricted, resulting in low longitudinal relaxivity values (r(1) = 1.2-2.2 mM(-1) s(-1) measured at 60 MHz). Addition of Cu(+) to CG2, CG3, CG4, and CG5 and either Cu(+) or Cu(2+) to CG6 triggers marked enhancements in relaxivity (r(1) = 2.3-6.9 mM(-1) s(-1)). CG2 and CG3 exhibit the greatest turn-on responses, going from r(1) = 1.5 mM(-1) s(-1) in the absence of Cu(+) to r(1) = 6.9 mM(-1) s(-1) upon Cu(+) binding (a 360% increase). The CG sensors are highly selective for Cu(+) and/or Cu(2+) over competing metal ions at cellular concentrations, including Zn(2+) at 10-fold higher concentrations. (17)O NMR dysprosium-induced shift and nuclear magnetic relaxation dispersion measurements support a mechanism in which copper-induced changes in the coordination environment of the Gd(3+) core result in increases in q and r(1). T(1)-weighted phantom images establish that the CG sensors are capable of visualizing changes in copper levels by MRI at clinical field strengths.


Nature Chemistry | 2015

Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

Emily L. Que; Reiner Bleher; Francesca E. Duncan; Betty Y. Kong; Sophie Charlotte Gleber; Stefan Vogt; Si Chen; Seth A. Garwin; Amanda R. Bayer; Vinayak P. Dravid; Teresa K. Woodruff; Thomas V. O'Halloran

Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.


Molecular Human Reproduction | 2014

Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition

Betty Y. Kong; Francesca E. Duncan; Emily L. Que; Alison M. Kim; Thomas V. O'Halloran; Teresa K. Woodruff

Rapid cellular zinc influx regulates early mammalian development during the oocyte-to-egg transition through modulation of the meiotic cell cycle. Despite the physiological necessity of this zinc influx, the molecular mechanisms that govern such accumulation are unknown. Here we show that the fully grown mammalian oocyte does not employ a transcriptionally based mechanism of zinc regulation involving metal response element-binding transcription factor-1 (MTF-1), as demonstrated by a lack of MTF-1 responsiveness to environmental zinc manipulation. Instead, the mammalian oocyte controls zinc uptake through two maternally derived and cortically distributed zinc transporters, ZIP6 and ZIP10. Targeted disruption of these transporters using several approaches during meiotic maturation perturbs the intracellular zinc quota and results in a cell cycle arrest at a telophase I-like state. This arrest phenocopies established models of zinc insufficiency during the oocyte-to-egg transition, indicating the essential function of these maternally expressed transporters. Labile zinc localizes to punctate cytoplasmic structures in the human oocyte, and ZIP6 and ZIP10 are enriched in the cortex. Altogether, we demonstrate a mechanism of metal regulation required for female gamete development that may be evolutionarily conserved.


Chemical Science | 2012

A cell-permeable gadolinium contrast agent for magnetic resonance imaging of copper in a Menkes disease model

Emily L. Que; Elizabeth J. New; Christopher J. Chang

We present the synthesis and characterization of octaarginine-conjugated Copper-Gad-2 (Arg8CG2), a new copper-responsive magnetic resonance imaging (MRI) contrast agent that combines a Gd3+-DO3A scaffold with a thioether-rich receptor for copper recognition. The inclusion of a polyarginine appendage leads to a marked increase in cellular uptake compared to previously reported MRI-based copper sensors of the CG family. Arg8CG2 exhibits a 220% increase in relaxivity (r1 = 3.9 to 12.5 mM-1 s-1) upon 1 : 1 binding with Cu+, with a highly selective response to Cu+ over other biologically relevant metal ions. Moreover, Arg8CG2 accumulates in cells at nine-fold greater concentrations than the parent CG2 lacking the polyarginine functionality and is retained well in the cell after washing. In cellulo relaxivity measurements and T1-weighted phantom images using a Menkes disease model cell line demonstrate the utility of Arg8CG2 to report on biological perturbations of exchangeable copper pools.


Chemistry & Biology | 2012

Fluxes in "free" and total zinc are essential for progression of intraerythrocytic stages of Plasmodium falciparum.

Rebecca Marvin; Janet L. Wolford; Matthew J. Kidd; Sean C. Murphy; Jesse Ward; Emily L. Que; Meghan L. Mayer; James E. Penner-Hahn; Kasturi Haldar; Thomas V. O'Halloran

Dynamic fluxes in the concentration of ions and small molecules are fundamental features of cell signaling, differentiation, and development. Similar roles for fluxes in transition metal concentrations are less well established. Here, we show that massive zinc fluxes are essential in the infection cycle of an intracellular eukaryotic parasite. Using single-cell quantitative imaging, we show that growth of the blood-stage Plasmodium falciparum parasite requires acquisition of 30 million zinc atoms per erythrocyte before host cell rupture, corresponding to a 400% increase in total zinc concentration. Zinc accumulates in a freely available form in parasitophorous compartments outside the food vacuole, including mitochondria. Restriction of zinc availability via small molecule treatment causes a drop in mitochondrial membrane potential and severely inhibits parasite growth. Thus, extraordinary zinc acquisition and trafficking are essential for parasite development.


Scientific Reports | 2016

The zinc spark is an inorganic signature of human egg activation

Francesca E. Duncan; Emily L. Que; Nan Zhang; Eve C. Feinberg; Thomas V. O’Halloran; Teresa K. Woodruff

Egg activation refers to events required for transition of a gamete into an embryo, including establishment of the polyspermy block, completion of meiosis, entry into mitosis, selective recruitment and degradation of maternal mRNA, and pronuclear development. Here we show that zinc fluxes accompany human egg activation. We monitored calcium and zinc dynamics in individual human eggs using selective fluorophores following activation with calcium-ionomycin, ionomycin, or hPLCζ cRNA microinjection. These egg activation methods, as expected, induced rises in intracellular calcium levels and also triggered the coordinated release of zinc into the extracellular space in a prominent “zinc spark.” The ability of the gamete to mount a zinc spark response was meiotic-stage dependent. Moreover, chelation of intracellular zinc alone was sufficient to induce cell cycle resumption and transition of a meiotic cell into a mitotic one. Together, these results demonstrate critical functions for zinc dynamics and establish the zinc spark as an extracellular marker of early human development.


Scientific Reports | 2016

The fertilization-induced zinc spark is a novel biomarker of mouse embryo quality and early development

Nan Zhang; Francesca E. Duncan; Emily L. Que; Thomas V. O’Halloran; Teresa K. Woodruff

Upon activation, mammalian eggs release billions of zinc ions in an exocytotic event termed the “zinc spark.” The zinc spark is dependent on and occurs coordinately with intracellular calcium transients, which are tightly associated with embryonic development. Thus, we hypothesized that the zinc spark represents an early extracellular physicochemical marker of the developmental potential of the zygote. To test this hypothesis, we monitored zinc exocytosis in individual mouse eggs following parthenogenetic activation or in vitro fertilization (IVF) and tracked their development. Retrospective analysis of zinc spark profiles revealed that parthenotes and zygotes that developed into blastocysts released more zinc than those that failed to develop. Prospective selection of embryos based on their zinc spark profile significantly improved developmental outcomes and more than doubled the percentage of embryos that reached the blastocyst stage. Moreover, the zinc spark profile was also associated with embryo quality as the total cell number in the resulting morulae and blastocysts positively correlated with the zinc spark amplitude (R = 0.9209). Zinc sparks can thus serve as an early biomarker of zygote quality in mouse model.


Developmental Dynamics | 2015

The inorganic anatomy of the mammalian preimplantation embryo and the requirement of zinc during the first mitotic divisions

Betty Y. Kong; Francesca E. Duncan; Emily L. Que; Yuanming Xu; Stefan Vogt; Thomas V. O'Halloran; Teresa K. Woodruff

Background: Zinc is the most abundant transition metal in the mammalian oocyte, and dynamic fluxes in intracellular concentration are essential for regulating both meiotic progression and fertilization. Whether the defined pathways of zinc utilization in female meiosis directly translate to mitotic cells, including the mammalian preimplantation embryo, has not been studied previously. Results: We determined that zinc is the most abundant transition metal in the preimplantation embryo, with levels an order of magnitude higher than those of iron or copper. Using a zinc‐specific fluorescent probe, we demonstrated that labile zinc is distributed in vesicle‐like structures in the cortex of cells at all stages of preimplantation embryo development. To test the importance of zinc during this period, we induced zinc insufficiency using the heavy metal chelator N,N,N′,N′‐tetrakis‐(2‐pyridylmethyl)‐ethylenediamine (TPEN). Incubation of embryos in media containing TPEN resulted in a developmental arrest that was specific to zinc chelation and associated with compromised mitotic parameters. The developmental arrest due to zinc insufficiency was associated with altered chromatin structure in the blastomere nuclei and decreased global transcription. Conclusions: These results demonstrate for the first time that the preimplantation embryo requires tight zinc regulation and homeostasis for the initial mitotic divisions of life. Developmental Dynamics 244:935–947, 2015.

Collaboration


Dive into the Emily L. Que's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Vogt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge