Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emir Hadzijusufovic is active.

Publication


Featured researches published by Emir Hadzijusufovic.


Blood | 2015

Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors.

Peter Valent; Emir Hadzijusufovic; Gerit-Holger Schernthaner; Dominik Wolf; Delphine Rea; le Coutre P

Vascular safety is an emerging issue in patients with chronic myeloid leukemia (CML) treated with tyrosine kinase inhibitors (TKIs). Whereas imatinib exhibits a well-documented and favorable long-term safety profile without obvious accumulation of vascular events, several types of vascular adverse events (VAEs) have been described in patients receiving second- or third-generation BCR/ABL1 TKIs. Such VAEs include pulmonary hypertension in patients treated with dasatinib, peripheral arterial occlusive disease and other arterial disorders in patients receiving nilotinib, and venous and arterial vascular occlusive events during ponatinib. Although each TKI interacts with a unique profile of molecular targets and has been associated with a unique pattern of adverse events, the mechanisms of drug-induced vasculopathy are not well understood. Here, recent data and concepts around VAEs in TKI-treated patients with CML are discussed, with special reference to potential mechanisms, event management, and strategies aimed at avoiding occurrence of such events in long-term treated patients.


Cancer Research | 2010

Polo-like Kinase 1 (Plk1) as a Novel Drug Target in Chronic Myeloid Leukemia: Overriding Imatinib Resistance with the Plk1 Inhibitor BI 2536

Karoline V. Gleixner; Veronika Ferenc; Barbara Peter; Alexander Gruze; Renata A. Meyer; Emir Hadzijusufovic; Sabine Cerny-Reiterer; Matthias Mayerhofer; Winfried F. Pickl; Christian Sillaber; Peter Valent

In most patients with chronic myeloid leukemia (CML), the disease can be kept under control using the BCR/ABL kinase inhibitor imatinib. Nevertheless, resistance or intolerance to imatinib and other BCR/ABL inhibitors may occur during therapy. Therefore, CML research is focusing on novel targets and targeted drugs. Polo-like kinase 1 (Plk1) is a serine/threonine kinase that plays an essential role in mitosis. In this study, we examined the expression of Plk1 in CML cells and its potential role as a therapeutic target. Plk1 was found to be expressed in phosphorylated form in the CML cell line K562 as well as in primary CML cells in all patients tested. Inhibition of BCR/ABL by imatinib or nilotinib (AMN107) led to decreased expression of the Plk1 protein in CML cells, suggesting that BCR/ABL promotes Plk1 generation. Silencing of Plk1 in CML cells by a small interfering RNA approach was followed by cell cycle arrest and apoptosis. Furthermore, the Plk1-targeting drug BI 2536 was found to inhibit proliferation of imatinib-sensitive and imatinib-resistant CML cells, including leukemic cells, carrying the T315 mutation of BCR/ABL with reasonable IC(50) values (1-50 nmol/L). The growth-inhibitory effects of BI 2536 on CML cells were found to be associated with cell cycle arrest and apoptosis. Moreover, BI 2536 was found to synergize with imatinib and nilotinib in producing growth inhibition in CML cells. In conclusion, Plk1 is expressed in CML cells and may represent a novel, interesting target in imatinib-sensitive and imatinib-resistant CML.


Blood | 2011

KIT-D816V–independent oncogenic signaling in neoplastic cells in systemic mastocytosis: role of Lyn and Btk activation and disruption by dasatinib and bosutinib

Karoline V. Gleixner; Matthias Mayerhofer; Sabine Cerny-Reiterer; Gregor Hörmann; Uwe Rix; Keiryn L. Bennett; Emir Hadzijusufovic; Renata A. Meyer; Winfried F. Pickl; Jason Gotlib; Hans-Peter Horny; Andreas Reiter; Gerlinde Mitterbauer-Hohendanner; Giulio Superti-Furga; Peter Valent

Systemic mastocytosis (SM) either presents as a malignant neoplasm with short survival or as an indolent disease with normal life expectancy. In both instances, neoplastic mast cells (MCs) harbor D816V-mutated KIT, suggesting that additional oncogenic mechanisms are involved in malignant transformation. We here describe that Lyn and Btk are phosphorylated in a KIT-independent manner in neoplastic MCs in advanced SM and in the MC leukemia cell line HMC-1. Lyn and Btk activation was not only detected in KIT D816V-positive HMC-1.2 cells, but also in the KIT D816V-negative HMC-1.1 subclone. Moreover, KIT D816V did not induce Lyn/Btk activation in Ba/F3 cells, and deactivation of KIT D816V by midostaurin did not alter Lyn/Btk activation. siRNAs against Btk and Lyn were found to block survival in neoplastic MCs and to cooperate with midostaurin in producing growth inhibition. Growth inhibitory effects were also obtained with 2 targeted drugs, dasatinib which blocks KIT, Lyn, and Btk activation in MCs, and bosutinib, a drug that deactivates Lyn and Btk without blocking KIT activity. Together, KIT-independent signaling via Lyn/Btk contributes to growth of neoplastic MCs in advanced SM. Dasatinib and bosutinib disrupt Lyn/Btk-driven oncogenic signaling in neoplastic MC, which may have clinical implications and explain synergistic drug interactions.


Allergy | 2014

The KIT D816V allele burden predicts survival in patients with mastocytosis and correlates with the WHO type of the disease

Gregor Hoermann; Karoline V. Gleixner; Graziella E. Dinu; Michael Kundi; Georg Greiner; Friedrich Wimazal; Emir Hadzijusufovic; Gerlinde Mitterbauer; Christine Mannhalter; Peter Valent; Wolfgang R. Sperr

KIT D816V is present in a majority of patients with systemic mastocytosis (SM). We determined the KIT D816V allele burden by quantitative real‐time PCR in bone marrow and peripheral blood of 105 patients with mastocytosis. KIT D816V was detected in 92/105 patients (88%). Significant differences in the median allele burden were observed between disease subgroups: cutaneous mastocytosis (0.042%), indolent SM (0.285%), smoldering SM (5.991%), aggressive SM (9.346%), and SM with associated hematologic non‐mast cell lineage disease (3.761%) (P < 0.001). The KIT D816V burden also correlated with serum tryptase (R = 0.5, P < 0.005) but not with mast cell infiltration in bone marrow or mediator symptoms. Moreover, the allele burden was of prognostic significance regarding survival (P < 0.01). Patients responding to cytoreductive therapy showed a significant decrease in KIT D816V (P < 0.05). To conclude, the KIT D816V burden correlates with the variant of mastocytosis, predicts survival, and is a valuable follow‐up parameter in SM.


Haematologica | 2013

Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V

Karoline V. Gleixner; Barbara Peter; Katharina Blatt; Verena Suppan; Andreas Reiter; Deepti Radia; Emir Hadzijusufovic; Peter Valent

Patients with advanced systemic mastocytosis, including mast cell leukemia, have a poor prognosis. In these patients, neoplastic mast cells usually harbor the KIT mutant D816V that confers resistance against tyrosine kinase inhibitors. We examined the effects of the multi-kinase blocker ponatinib on neoplastic mast cells and investigated whether ponatinib acts synergistically with other antineoplastic drugs. Ponatinib was found to inhibit the kinase activity of KIT G560V and KIT D816V in the human mast cell leukemia cell line HMC-1. In addition, ponatinib was found to block Lyn- and STAT5 activity in neoplastic mast cells. Ponatinib induced growth inhibition and apoptosis in HMC-1.1 cells (KIT G560V+) and HMC-1.2 cells (KIT G560V+/KIT D816V+) as well as in primary neoplastic mast cells. The effects of ponatinib were dose-dependent, but higher IC50-values were obtained in HMC-1 cells harboring KIT D816V than in those lacking KIT D816V. In drug combination experiments, ponatinib was found to synergize with midostaurin in producing growth inhibition and apoptosis in HMC-1 cells and primary neoplastic mast cells. The ponatinib+midostaurin combination induced substantial inhibition of KIT-, Lyn-, and STAT5 activity, but did not suppress Btk. We then applied a Btk short interfering RNA and found that Btk knockdown sensitizes HMC-1 cells against ponatinib. Finally, we were able to show that ponatinib synergizes with the Btk-targeting drug dasatinib to produce growth inhibition in HMC-1 cells. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic mast cells in advanced systemic mastocytosis and synergizes with midostaurin and dasatinib in inducing growth arrest in neoplastic mast cells.


Haematologica | 2014

Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy

Siham Bibi; Melis Dilara Arslanhan; Florent Langenfeld; Sylvie Jeanningros; Sabine Cerny-Reiterer; Emir Hadzijusufovic; Luba Tchertanov; Richard Moriggl; Peter Valent; Michel Arock

Chronic myeloid leukemia and systemic mastocytosis are myeloid neoplasms sharing a number of pathogenetic and clinical features. In both conditions, an aberrantly activated oncoprotein with tyrosine kinase activity, namely BCR-ABL1 in chronic myeloid leukemia, and mutant KIT, mostly KIT D816V, in systemic mastocytosis, is key to disease evolution. The appreciation of the role of such tyrosine kinases in these diseases has led to the development of improved therapies with tyrosine kinase-targeted inhibitors. However, most drugs, including new KIT D816V-blocking agents, have failed to achieve long-lasting remissions in advanced systemic mastocytosis, and there is a similar problem in chronic myeloid leukemia, where imatinib-resistant patients sometimes fail to achieve remission, even with second- or third-line BCR-ABL1 specific tyrosine kinase inhibitors. During disease progression, additional signaling pathways become activated in neoplastic cells, but most converge into major downstream networks. Among these, the AKT and STAT5 pathways appear most critical and may result in drug-resistant chronic myeloid leukemia and systemic mastocytosis. Inhibition of phosphorylation of these targets has proven their crucial role in disease-evolution in both malignancies. Together, these observations suggest that STAT5 and AKT are key drivers of oncogenesis in drug-resistant forms of the diseases, and that targeting STAT5 and AKT might be an interesting approach in these malignancies. The present article provides an overview of our current knowledge about the critical role of AKT and STAT5 in the pathophysiology of chronic myeloid leukemia and systemic mastocytosis and on their potential value as therapeutic targets in these neoplasms.


Experimental Hematology | 2010

H1-receptor antagonists terfenadine and loratadine inhibit spontaneous growth of neoplastic mast cells.

Emir Hadzijusufovic; Barbara Peter; Karoline V. Gleixner; Karina Schuch; Winfried F. Pickl; Tuddow Thaiwong; Vilma Yuzbasiyan-Gurkan; Irina Mirkina; Michael Willmann; Peter Valent

OBJECTIVE In mast cell (MC) neoplasms, clinical problems requiring therapy include local aggressive and sometimes devastating growth of MCs and mediator-related symptoms. A key mediator of MCs responsible for clinical symptoms is histamine. Therefore, use of histamine receptor (HR) antagonists is an established approach to block histamine effects in these patients. MATERIALS AND METHODS We screened for additional beneficial effects of HR antagonists and asked whether any of these agents would also exert growth-inhibitory effects on primary neoplastic MCs, the human MC line HMC-1, and on two canine MC lines, C2 and NI-1. RESULTS We found that the HR1 antagonists terfenadine and loratadine suppress spontaneous growth of HMC-1, C2, and NI-1 cells, as well as growth of primary neoplastic MCs in all donors tested (human patients, n = 5; canine patients, n = 8). The effects of both drugs were found to be dose-dependent (IC(50): terfenadine, 1-20 μM; loratadine, 10-50 μM). Both agents also produced apoptosis in neoplastic MCs and augmented apoptosis-inducing effects of two KIT-targeting drugs, PKC412 and dasatinib. The other HR1 antagonists (fexofenadine, diphenhydramine) and HR2 antagonists (famotidine, cimetidine, ranitidine) tested did not exert substantial growth-inhibitory effects on neoplastic MCs. None of the histamine receptor blockers were found to modulate cell-cycle progression in neoplastic MCs. CONCLUSIONS The HR1 antagonists terfenadine and loratadine, in addition to their antimediator activity, exert in vitro growth-inhibitory effects on neoplastic MCs. Whether these drugs (terfenadine) alone, or in combination with KIT inhibitors, can also affect in vivo neoplastic MC growth remains to be determined.


Blood | 2014

A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection

Rosine Saleh; Ghaith Wedeh; Harald Herrmann; Siham Bibi; Sabine Cerny-Reiterer; Irina Sadovnik; Katharina Blatt; Emir Hadzijusufovic; Sylvie Jeanningros; Catherine Blanc; Magali Legarff-Tavernier; Elise Chapiro; Frédéric Subra; Patrick Bonnemye; Patrice Dubreuil; Vanessa Desplat; Hélène Merle-Béral; Michael Willmann; Thomas Rülicke; Peter Valent; Michel Arock

In systemic mastocytosis (SM), clinical problems arise from factor-independent proliferation of mast cells (MCs) and the increased release of mediators by MCs, but no human cell line model for studying MC activation in the context of SM is available. We have created a stable stem cell factor (SCF) -dependent human MC line, ROSA(KIT WT), expressing a fully functional immunoglobulin E (IgE) receptor. Transfection with KIT D816V converted ROSA(KIT WT) cells into an SCF-independent clone, ROSA(KIT D816V), which produced a mastocytosis-like disease in NSG mice. Although several signaling pathways were activated, ROSA(KIT D816V) did not exhibit an increased, but did exhibit a decreased responsiveness to IgE-dependent stimuli. Moreover, NSG mice bearing ROSA(KIT D816V)-derived tumors did not show mediator-related symptoms, and KIT D816V-positive MCs obtained from patients with SM did not show increased IgE-dependent histamine release or CD63 upregulation. Our data show that KIT D816V is a disease-propagating oncoprotein, but it does not activate MCs to release proinflammatory mediators, which may explain why mediator-related symptoms in SM occur preferentially in the context of a coexisting allergy. ROSA(KIT D816V) may provide a valuable tool for studying the pathogenesis of mastocytosis and should facilitate the development of novel drugs for treating SM patients.


Current Cancer Drug Targets | 2009

Targeting of Hsp32 in solid tumors and leukemias: a novel approach to optimize anticancer therapy.

Karoline V. Gleixner; Matthias Mayerhofer; Anja Vales; Alexander Gruze; G. Hormann; Sabine Cerny-Reiterer; E. Lackner; Emir Hadzijusufovic; Harald Herrmann; Arun K. Iyer; Maria Theresa Krauth; Winfried F. Pickl; B. Marian; R. Panzer-Grumayer; Christian Sillaber; Hiroshi Maeda; Christoph Zielinski; Peter Valent

Heat shock protein 32 (Hsp32), also known as heme oxygenase-1 (HO-1), is a stress-related anti-apoptotic molecule, that has been implicated in enhanced survival of neoplastic cells and in drug-resistance. We here show that Hsp32 is expressed in most solid tumors and hematopoietic neoplasms and may be employed as a new therapeutic target as evidenced by experiments using specific siRNA and a Hsp32-targeting pharmacologic inhibitor. This Hsp-32 targeting drug, SMA-ZnPP, was found to inhibit the proliferation of neoplastic cells with IC(50) values ranging between 1 and 50 microM. In addition, SMA-ZnPP induced apoptosis in all neoplastic cells examined. Furthermore, SMA-ZnPP was found to synergize with other targeted and conventional drugs in producing growth-inhibition. Resulting synergistic effects were observed in all tumor and leukemia cells examined. Interestingly, several of the drug partners, when applied as single agents, induced the expression of Hsp32 in neoplastic cells, suggesting that synergistic effects resulted from SMA-ZnPP-induced ablation of a Hsp32-mediated survival-pathway that is otherwise used by tumor cells to escape drug-induced apoptosis. Together, Hsp32 is an important survival factor and target in solid tumors and hematopoietic neoplasms, and may be used to optimize anticancer therapy by combining conventional or targeted drugs with Hsp32-inhibitors. Based on these data, it seems desirable to explore the value of Hsp32-targeting drugs as anti-cancer agents in clinical trials.


Blood | 2015

Identification of the Ki-1 antigen (CD30) as a novel therapeutic target in systemic mastocytosis

Katharina Blatt; Sabine Cerny-Reiterer; Juliana Schwaab; Karl Sotlar; Gregor Eisenwort; Gabriele Stefanzl; Gregor Hoermann; Matthias Mayerhofer; Mathias Schneeweiss; Sylvia Knapp; Thomas Rülicke; Emir Hadzijusufovic; Karin Bauer; Dubravka Smiljkovic; Michael Willmann; Andreas Reiter; Hans-Peter Horny; Peter Valent

The Ki-1 antigen (CD30) is an established therapeutic target in patients with Hodgkin lymphoma and anaplastic large-cell lymphoma. We have recently shown that CD30 is expressed abundantly in the cytoplasm of neoplastic mast cells (MCs) in patients with advanced systemic mastocytosis (SM). In the current study, we asked whether CD30 is expressed on the surface of neoplastic MCs in advanced SM, and whether this surface structure may serve as therapeutic target in SM. As assessed by flow cytometry, CD30 was found to be expressed on the surface of neoplastic MCs in 3 of 25 patients (12%) with indolent SM, 4 of 7 patients (57%) with aggressive SM, and 4 of 7 patients (57%) with MC leukemia. The immature RAS-transformed human MC line MCPV-1.1 also expressed cell surface CD30, whereas the KIT-transformed MC line HMC-1.2 expressed no detectable CD30. The CD30-targeting antibody-conjugate brentuximab-vedotin inhibited proliferation in neoplastic MCs, with lower IC50 values obtained in CD30(+) MCPV-1.1 cells (10 µg/mL) compared with CD30(-) HMC-1.2 cells (>50 µg/mL). In addition, brentuximab-vedotin suppressed the engraftment of MCPV-1.1 cells in NSG mice. Moreover, brentuximab-vedotin produced apoptosis in all CD30(+) MC lines tested as well as in primary neoplastic MCs in patients with CD30(+) SM, but did not induce apoptosis in neoplastic MCs in patients with CD30(-) SM. Furthermore, brentuximab-vedotin was found to downregulate anti-IgE-induced histamine release in CD30(+) MCs. Finally, brentuximab-vedotin and the KIT D816V-targeting drug PKC412 produced synergistic growth-inhibitory effects in MCPV-1.1 cells. Together, CD30 is a promising new drug target for patients with CD30(+) advanced SM.

Collaboration


Dive into the Emir Hadzijusufovic's collaboration.

Top Co-Authors

Avatar

Peter Valent

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Barbara Peter

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Karoline V. Gleixner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Wolfgang R. Sperr

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Gregor Hoermann

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Willmann

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Katharina Blatt

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Winfried F. Pickl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Harald Herrmann

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge