Gregor Hoermann
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregor Hoermann.
Blood | 2011
Wolfgang Warsch; Karoline Kollmann; Eva Eckelhart; Sabine Fajmann; Sabine Cerny-Reiterer; Andrea Hölbl; Karoline V. Gleixner; Michael Dworzak; Matthias Mayerhofer; Gregor Hoermann; Harald Herrmann; Christian Sillaber; Gerda Egger; Peter Valent; Richard Moriggl; Veronika Sexl
In BCR-ABL1(+) leukemia, drug resistance is often associated with up-regulation of BCR-ABL1 or multidrug transporters as well as BCR-ABL1 mutations. Here we show that the expression level of the transcription factor STAT5 is another parameter that determines the sensitivity of BCR-ABL1(+) cells against tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, or dasatinib. Abelson-transformed cells, expressing high levels of STAT5, were found to be significantly less sensitive to TKI-induced apoptosis in vitro and in vivo but not to other cytotoxic drugs, such as hydroxyurea, interferon-β, or Aca-dC. The STAT5-mediated protection requires tyrosine phosphorylation of STAT5 independent of JAK2 and transcriptional activity. In support of this concept, under imatinib treatment and with disease progression, STAT5 mRNA and protein levels increased in patients with Ph(+) chronic myeloid leukemia. Based on our data, we propose a model in which disease progression in BCR-ABL1(+) leukemia leads to up-regulated STAT5 expression. This may be in part the result of clonal selection of cells with high STAT5 levels. STAT5 then accounts for the resistance against TKIs, thereby explaining the dose escalation frequently required in patients reaching accelerated phase. It also suggests that STAT5 may serve as an attractive target to overcome imatinib resistance in BCR-ABL1(+) leukemia.
Blood | 2014
Harald Herrmann; Irina Sadovnik; Sabine Cerny-Reiterer; Thomas Rülicke; Gabriele Stefanzl; Michael Willmann; Gregor Hoermann; Martin Bilban; Katharina Blatt; Susanne Herndlhofer; Matthias Mayerhofer; Berthold Streubel; Wolfgang R. Sperr; Tessa L. Holyoake; Christine Mannhalter; Peter Valent
Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although mechanisms of BCR/ABL1-induced transformation are well-defined, little is known about effector-molecules contributing to malignant expansion and the extramedullary spread of leukemic SC (LSC) in CML. We have identified the cytokine-targeting surface enzyme dipeptidylpeptidase-IV (DPPIV/CD26) as a novel, specific and pathogenetically relevant biomarker of CD34(+)/CD38(─) CML LSC. In functional assays, CD26 was identified as target enzyme disrupting the SDF-1-CXCR4-axis by cleaving SDF-1, a chemotaxin recruiting CXCR4(+) SC. CD26 was not detected on normal SC or LSC in other hematopoietic malignancies. Correspondingly, CD26(+) LSC decreased to low or undetectable levels during successful treatment with imatinib. CD26(+) CML LSC engrafted NOD-SCID-IL-2Rγ(-/-) (NSG) mice with BCR/ABL1(+) cells, whereas CD26(─) SC from the same patients produced multilineage BCR/ABL1(-) engraftment. Finally, targeting of CD26 by gliptins suppressed the expansion of BCR/ABL1(+) cells. Together, CD26 is a new biomarker and target of CML LSC. CD26 expression may explain the abnormal extramedullary spread of CML LSC, and inhibition of CD26 may revert abnormal LSC function and support curative treatment approaches in this malignancy.
Leukemia | 2015
Michel Arock; Karl Sotlar; Cem Akin; Sigurd Broesby-Olsen; Gregor Hoermann; Luis Escribano; Thomas Kielsgaard Kristensen; Hanneke C. Kluin-Nelemans; Olivier Hermine; Patrice Dubreuil; Wolfgang R. Sperr; Karin Hartmann; Jason Gotlib; Nicholas C.P. Cross; Torsten Haferlach; Andrés C. García-Montero; Alberto Orfao; Juliana Schwaab; Massimo Triggiani; Hans-Peter Horny; Dean D. Metcalfe; Andreas Reiter; Peter Valent
Although acquired mutations in KIT are commonly detected in various categories of mastocytosis, the methodologies applied to detect and quantify the mutant type and allele burden in various cells and tissues are poorly defined. We here propose a consensus on methodologies used to detect KIT mutations in patients with mastocytosis at diagnosis and during follow-up with sufficient precision and sensitivity in daily practice. In addition, we provide recommendations for sampling and storage of diagnostic material as well as a robust diagnostic algorithm. Using highly sensitive assays, KIT D816V can be detected in peripheral blood leukocytes from most patients with systemic mastocytosis (SM) that is a major step forward in screening and SM diagnosis. In addition, the KIT D816V allele burden can be followed quantitatively during the natural course or during therapy. Our recommendations should greatly facilitate diagnostic and follow-up investigations in SM in daily practice as well as in clinical trials. In addition, the new tools and algorithms proposed should lead to a more effective screen, early diagnosis of SM and help to avoid unnecessary referrals.
Journal of Immunology | 2008
Matthias Mayerhofer; Karoline V. Gleixner; Andrea Hoelbl; Stefan Florian; Gregor Hoermann; Karl J. Aichberger; Martin Bilban; Harald Esterbauer; Maria-Theresa Krauth; Wolfgang R. Sperr; Jack B. Longley; Robert Kralovics; Richard Moriggl; Jacques Zappulla; Roland S. Liblau; Ilse Schwarzinger; Veronika Sexl; Christian Sillaber; Peter Valent
Oncogenic tyrosine kinases (TK) usually convert growth factor-dependent cells to factor independence with autonomous proliferation. However, TK-driven neoplasms often are indolent and characterized by cell differentiation rather than proliferation. A prototype of an indolent TK-driven neoplasm is indolent systemic mastocytosis. We found that the D816V-mutated variant of KIT, a TK detectable in most patients with systemic mastocytosis, induces cluster formation and expression of several mast cell differentiation and adhesion Ags, including microphthalmia transcription factor, IL-4 receptor, histamine, CD63, and ICAM-1 in IL-3-dependent BaF3 cells. By contrast, wild-type KIT did not induce cluster formation or mast cell differentiation Ags. Additionally, KIT D816V, but not wild-type KIT, induced STAT5 activation in BaF3 cells. However, despite these intriguing effects, KIT D816V did not convert BaF3 cells to factor-independent proliferation. Correspondingly, BaF3 cells with conditional expression of KIT D816V did not form tumors in nude mice. Together, the biologic effects of KIT D816V in BaF3 cells match strikingly with the clinical course of indolent systemic mastocytosis and with our recently established transgenic mouse model, in which KIT D816V induces indolent mast cell accumulations but usually does not induce a malignant mast cell disease. Based on all these results, it is hypothesized that KIT D816V as a single hit may be sufficient to cause indolent systemic mastocytosis, whereas additional defects may be required to induce aggressive mast cell disorders.
Nature Medicine | 2016
Olga A. Guryanova; Kaitlyn Shank; Barbara Spitzer; Luisa Luciani; Richard Koche; Francine E. Garrett-Bakelman; Chezi Ganzel; Benjamin H. Durham; Abhinita Mohanty; Gregor Hoermann; Sharon A. Rivera; Alan Chramiec; Elodie Pronier; Lennart Bastian; Matthew Keller; Daniel Tovbin; Evangelia Loizou; Abby Weinstein; Adriana Rodriguez Gonzalez; Yen K. Lieu; Jacob M. Rowe; Friederike Pastore; Anna Sophia McKenney; Andrei V. Krivtsov; Wolfgang R. Sperr; Justin R. Cross; Christopher E. Mason; Martin S. Tallman; Maria E. Arcila; Omar Abdel-Wahab
Although the majority of patients with acute myeloid leukemia (AML) initially respond to chemotherapy, many of them subsequently relapse, and the mechanistic basis for AML persistence following chemotherapy has not been determined. Recurrent somatic mutations in DNA methyltransferase 3A (DNMT3A), most frequently at arginine 882 (DNMT3AR882), have been observed in AML and in individuals with clonal hematopoiesis in the absence of leukemic transformation. Patients with DNMT3AR882 AML have an inferior outcome when treated with standard-dose daunorubicin-based induction chemotherapy, suggesting that DNMT3AR882 cells persist and drive relapse. We found that Dnmt3a mutations induced hematopoietic stem cell expansion, cooperated with mutations in the FMS-like tyrosine kinase 3 gene (Flt3ITD) and the nucleophosmin gene (Npm1c) to induce AML in vivo, and promoted resistance to anthracycline chemotherapy. In patients with AML, the presence of DNMT3AR882 mutations predicts minimal residual disease, underscoring their role in AML chemoresistance. DNMT3AR882 cells showed impaired nucleosome eviction and chromatin remodeling in response to anthracycline treatment, which resulted from attenuated recruitment of histone chaperone SPT-16 following anthracycline exposure. This defect led to an inability to sense and repair DNA torsional stress, which resulted in increased mutagenesis. Our findings identify a crucial role for DNMT3AR882 mutations in driving AML chemoresistance and highlight the importance of chromatin remodeling in response to cytotoxic chemotherapy.
PLOS ONE | 2009
Andrea Perne; Markus K Muellner; Magdalena Steinrueck; Nils Craig-Mueller; Julia Mayerhofer; Ilse Schwarzinger; Mathew A. Sloane; Iris Z. Uras; Gregor Hoermann; Sebastian M.B. Nijman; Matthias Mayerhofer
Background Cardiac glycosides are Na+/K+-pump inhibitors widely used to treat heart failure. They are also highly cytotoxic, and studies have suggested specific anti-tumor activity leading to current clinical trials in cancer patients. However, a definitive demonstration of this putative anti-cancer activity and the underlying molecular mechanism has remained elusive. Methodology/Principal Findings Using an unbiased transcriptomics approach, we found that cardiac glycosides inhibit general protein synthesis. Protein synthesis inhibition and cytotoxicity were not specific for cancer cells as they were observed in both primary and cancer cell lines. These effects were dependent on the Na+/K+-pump as they were rescued by expression of a cardiac glycoside-resistant Na+/K+-pump. Unlike human cells, rodent cells are largely resistant to cardiac glycosides in vitro and mice were found to tolerate extremely high levels. Conclusions/Significance The physiological difference between human and mouse explains the previously observed sensitivity of human cancer cells in mouse xenograft experiments. Thus, published mouse xenograft models used to support anti-tumor activity for these drugs require reevaluation. Our finding that cardiac glycosides inhibit protein synthesis provides a mechanism for the cytotoxicity of CGs and raises concerns about ongoing clinical trials to test CGs as anti-cancer agents in humans.
The FASEB Journal | 2012
Gregor Hoermann; Sabine Cerny-Reiterer; Harald Herrmann; Katharina Blatt; Martin Bilban; Heinz Gisslinger; Bettina Gisslinger; Leonhard Müllauer; Robert Kralovics; Christine Mannhalter; Peter Valent; Matthias Mayerhofer
The JAK2 mutation V617F is detectable in a majority of patients with Philadelphia chromosome‐negative myeloproliferative neoplasms (MPNs). Enforced expression of JAK2 V617F in mice induces myeloproliferation and bone marrow (BM) fibrosis, suggesting a causal role for the JAK2 mutant in the pathogenesis of MPNs. However, little is known about mechanisms and effector molecules contributing to JAK2 V617F‐induced myeloproliferation and fibrosis. We show that JAK2 V617F promotes expression of oncostatin M (OSM) in neoplastic myeloid cells. Correspondingly, OSM mRNA levels were increased in the BM of patients with MPNs (median 287% of ABL, range 22–1450%) compared to control patients (median 59% of ABL, range 12–264%; P< 0.0001). OSM secreted by JAK2 V617F+ cells stimulated growth of fibroblasts and microvascular endothelial cells and induced the production of angiogenic and profibrogenic cytokines (HGF, VEGF, and SDF‐1) in BM fibroblasts. All effects of MPN cell‐derived OSM were blocked by a neutralizing anti‐OSM antibody, whereas the production of OSM in MPN cells was suppressed by a pharmacologic JAK2 inhibitor or RNAi‐mediated knockdown of JAK2. In summary, JAK2 V617F‐mediated up‐regulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in MPNs, suggesting that OSM might serve as a novel therapeutic target molecule in these neoplasms.—Hoermann, G., Cerny‐Reiterer, S., Herrmann, H., Blatt, K., Bilban, M., Gisslinger, H., Gisslinger, B., Müllauer, L., Kralovics, R., Mannhalter, C., Valent, P., Mayerhofer, M. Identification of oncostatin M as a JAK2 V617F‐dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms. FASEB J. 26, 894–906 (2012). www.fasebj.org
Allergy | 2014
Gregor Hoermann; Karoline V. Gleixner; Graziella E. Dinu; Michael Kundi; Georg Greiner; Friedrich Wimazal; Emir Hadzijusufovic; Gerlinde Mitterbauer; Christine Mannhalter; Peter Valent; Wolfgang R. Sperr
KIT D816V is present in a majority of patients with systemic mastocytosis (SM). We determined the KIT D816V allele burden by quantitative real‐time PCR in bone marrow and peripheral blood of 105 patients with mastocytosis. KIT D816V was detected in 92/105 patients (88%). Significant differences in the median allele burden were observed between disease subgroups: cutaneous mastocytosis (0.042%), indolent SM (0.285%), smoldering SM (5.991%), aggressive SM (9.346%), and SM with associated hematologic non‐mast cell lineage disease (3.761%) (P < 0.001). The KIT D816V burden also correlated with serum tryptase (R = 0.5, P < 0.005) but not with mast cell infiltration in bone marrow or mediator symptoms. Moreover, the allele burden was of prognostic significance regarding survival (P < 0.01). Patients responding to cytoreductive therapy showed a significant decrease in KIT D816V (P < 0.05). To conclude, the KIT D816V burden correlates with the variant of mastocytosis, predicts survival, and is a valuable follow‐up parameter in SM.
Leukemia | 2014
A Berger; Andrea Hoelbl-Kovacic; J Bourgeais; L Hoefling; Wolfgang Warsch; Eva Grundschober; Iris Z. Uras; Ingeborg Menzl; Eva Maria Putz; Gregor Hoermann; C Schuster; S Fajmann; E Leitner; Stefan Kubicek; Richard Moriggl; F Gouilleux; Veronika Sexl
The transcription factor STAT5 (signal transducer and activator of transcription 5) is frequently activated in hematological malignancies and represents an essential signaling node downstream of the BCR-ABL oncogene. STAT5 can be phosphorylated at three positions, on a tyrosine and on the two serines S725 and S779. We have investigated the importance of STAT5 serine phosphorylation for BCR-ABL-induced leukemogenesis. In cultured bone marrow cells, expression of a STAT5 mutant lacking the S725 and S779 phosphorylation sites (STAT5SASA) prohibits transformation and induces apoptosis. Accordingly, STAT5SASA BCR-ABL+ cells display a strongly reduced leukemic potential in vivo, predominantly caused by loss of S779 phosphorylation that prevents the nuclear translocation of STAT5. Three distinct lines of evidence indicate that S779 is phosphorylated by group I p21-activated kinase (PAK). We show further that PAK-dependent serine phosphorylation of STAT5 is unaffected by BCR-ABL tyrosine kinase inhibitor treatment. Interfering with STAT5 phosphorylation could thus be a novel therapeutic approach to target BCR-ABL-induced malignancies.
Scientific Reports | 2015
Franz Ratzinger; Helmuth Haslacher; W. Poeppl; Gregor Hoermann; Johannes J. Kovarik; Sabrina Jutz; Peter Steinberger; Heinz Burgmann; Winfried F. Pickl; Klaus G. Schmetterer
Advanced macrolides, such as azithromycin (AZM) or clarithromycin (CLM), are antibiotics with immunomodulatory properties. Here we have sought to evaluate their in vitro influence on the activation of CD4+ T-cells. Isolated CD4+ T-cells were stimulated with agonistic anti-CD3/anti-CD28 monoclonal antibodies in the presence of 0.6 mg/L, 2.5 mg/L, 10 mg/L or 40 mg/L AZM or CLM. Cell proliferation, cytokine level in supernatants and cell viability was assessed. Intracellular signaling pathways were evaluated using reporter cell lines, FACS analysis, immunoblotting and in vitro kinase assays. AZM inhibited cell proliferation rate and cytokine secretion of CD4+ T-cells in a dose-dependent manner. Similarly, high concentrations of CLM (40 mg/L) also suppressed these T-cell functions. Analysis of molecular signaling pathways revealed that exposure to AZM reduced the phosphorylation of the S6 ribosomal protein, a downstream target of mTOR. This effect was also observed at 40 mg/L CLM. In vitro kinase studies using recombinant mTOR showed that AZM inhibited mTOR activity. In contrast to rapamycin, this inhibition was independent of FKBP12. We show for the first time that AZM and to a lesser extent CLM act as immunosuppressive agents on CD4+ T-cells by inhibiting mTOR activity. Our results might have implications for the clinical use of macrolides.