Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharina Blatt is active.

Publication


Featured researches published by Katharina Blatt.


Nature | 2011

RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia

Johannes Zuber; Junwei Shi; Eric Wang; Amy R. Rappaport; Harald Herrmann; Edward Allan R. Sison; Daniel Magoon; Jun Qi; Katharina Blatt; Mark Wunderlich; Meredith J. Taylor; Christopher Johns; Agustin Chicas; James C. Mulloy; Scott C. Kogan; Patrick Brown; Peter Valent; James E. Bradner; Scott W. Lowe; Christopher R. Vakoc

Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.


Blood | 2014

Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia

Harald Herrmann; Irina Sadovnik; Sabine Cerny-Reiterer; Thomas Rülicke; Gabriele Stefanzl; Michael Willmann; Gregor Hoermann; Martin Bilban; Katharina Blatt; Susanne Herndlhofer; Matthias Mayerhofer; Berthold Streubel; Wolfgang R. Sperr; Tessa L. Holyoake; Christine Mannhalter; Peter Valent

Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although mechanisms of BCR/ABL1-induced transformation are well-defined, little is known about effector-molecules contributing to malignant expansion and the extramedullary spread of leukemic SC (LSC) in CML. We have identified the cytokine-targeting surface enzyme dipeptidylpeptidase-IV (DPPIV/CD26) as a novel, specific and pathogenetically relevant biomarker of CD34(+)/CD38(─) CML LSC. In functional assays, CD26 was identified as target enzyme disrupting the SDF-1-CXCR4-axis by cleaving SDF-1, a chemotaxin recruiting CXCR4(+) SC. CD26 was not detected on normal SC or LSC in other hematopoietic malignancies. Correspondingly, CD26(+) LSC decreased to low or undetectable levels during successful treatment with imatinib. CD26(+) CML LSC engrafted NOD-SCID-IL-2Rγ(-/-) (NSG) mice with BCR/ABL1(+) cells, whereas CD26(─) SC from the same patients produced multilineage BCR/ABL1(-) engraftment. Finally, targeting of CD26 by gliptins suppressed the expansion of BCR/ABL1(+) cells. Together, CD26 is a new biomarker and target of CML LSC. CD26 expression may explain the abnormal extramedullary spread of CML LSC, and inhibition of CD26 may revert abnormal LSC function and support curative treatment approaches in this malignancy.


Journal of Immunology | 2011

Mapping of Conformational IgE Epitopes with Peptide-Specific Monoclonal Antibodies Reveals Simultaneous Binding of Different IgE Antibodies to a Surface Patch on the Major Birch Pollen Allergen, Bet v 1

Anna Gieras; Petra Cejka; Katharina Blatt; Margarete Focke-Tejkl; Birgit Linhart; Sabine Flicker; Angelika Stoecklinger; Katharina Marth; Anja Drescher; Josef Thalhamer; Peter Valent; Otto Majdic; Rudolf Valenta

Allergic inflammation is based on the cross-linking of mast cell and basophil-bound IgE Abs and requires at least two binding sites for IgE on allergens, which are difficult to characterize because they are often conformational in nature. We studied the IgE recognition of birch pollen allergen Bet v 1, a major allergen for >100 million allergic patients. Monoclonal and polyclonal Abs raised against Bet v 1-derived peptides were used to compete with allergic patients’ IgE binding to Bet v 1 to search for sequences involved in IgE recognition. Strong inhibitions of patients’ IgE binding to Bet v 1 (52–75%) were obtained with mAbs specific for two peptides comprising aa 29–58 (P2) and aa 73–103 (P6) of Bet v 1. As determined by surface plasmon resonance, mAb2 specific for P2 and mAb12 specific for P6 showed high affinity, but only polyclonal rabbit anti-P2 and anti-P6 Abs or a combination of mAbs inhibited allergen-induced basophil degranulation. Thus, P2 and P6 define a surface patch on the Bet v 1 allergen, which allows simultaneous binding of several different IgE Abs required for efficient basophil and mast cell activation. This finding explains the high allergenic activity of the Bet v 1 allergen. The approach of using peptide-specific Abs for the mapping of conformational IgE epitopes on allergens may be generally applicable. It may allow discriminating highly allergenic from less allergenic allergen molecules and facilitate the rational design of active and passive allergen-specific immunotherapy strategies.


Journal of Investigative Dermatology | 2015

Der p 11 Is a Major Allergen for House Dust Mite-Allergic Patients Suffering from Atopic Dermatitis

Srinita Banerjee; Yvonne Resch; Kuan-Wei Chen; Ines Swoboda; Margit Focke-Tejkl; Katharina Blatt; Natalija Novak; Magnus Wickman; Marianne van Hage; Rosetta Ferrara; Adriano Mari; Ashok Purohit; Gabrielle Pauli; Elopy Sibanda; Portia Ndlovu; Wayne R. Thomas; Vladislav Krzyzanek; Sebastian Tacke; Ursula Malkus; Peter Valent; Rudolf Valenta; Susanne Vrtala

House dust mites (HDMs) belong to the most potent indoor allergen sources worldwide and are associated with allergic manifestations in the respiratory tract and the skin. Here we studied the importance of the high-molecular-weight group 11 allergen from Dermatophagoides pteronyssinus (Der p 11) in HDM allergy. Sequence analysis showed that Der p 11 has high homology to paramyosins from mites, ticks, and other invertebrates. A synthetic gene coding for Der p 11 was expressed in Escherichia coli and rDer p 11 purified to homogeneity as folded, alpha-helical protein as determined by circular dichroism spectroscopy. Using antibodies raised against rDer p 11 and immunogold electron microscopy, the allergen was localized in the muscle beneath the skin of mite bodies but not in feces. IgE reactivity of rDer p 11 was tested with sera from HDM-allergic patients from Europe and Africa in radioallergosorbent test-based dot-blot assays. Interestingly, we found that Der p 11 is a major allergen for patients suffering from atopic dermatitis (AD), whereas it is only a minor allergen for patients suffering from respiratory forms of HDM allergy. Thus, rDer p 11 might be a useful serological marker allergen for the identification of a subgroup of HDM-allergic patients suffering from HDM-associated AD.


Allergy | 2012

Basophils are not the key antigen-presenting cells in allergic patients.

Julia Eckl-Dorna; Adolf Ellinger; Katharina Blatt; Viviane Ghanim; Irene Steiner; M. Pavelka; Peter Valent; R. Valenta; Verena Niederberger

Recent data obtained in mouse models have initiated a controversy whether basophils are the key antigen‐presenting cells (APCs) in allergy. Here, we investigate whether basophils are of importance for the presentation of allergen and the induction of T cell proliferation in allergic patients.


Journal of Immunology | 2013

A Nonallergenic Birch Pollen Allergy Vaccine Consisting of Hepatitis PreS–Fused Bet v 1 Peptides Focuses Blocking IgG toward IgE Epitopes and Shifts Immune Responses to a Tolerogenic and Th1 Phenotype

Katharina Marth; Isabella Breyer; Margarete Focke-Tejkl; Katharina Blatt; Mohamed H. Shamji; Janice Layhadi; Anna Gieras; Ines Swoboda; Domen Zafred; Walter Keller; Peter Valent; Stephen R. Durham; Rudolf Valenta

Allergen-specific immunotherapy is the only allergen-specific and disease-modifying treatment for allergy. The construction and characterization of a vaccine for birch pollen allergy is reported. Two nonallergenic peptides, PA and PB, derived from the IgE-reactive areas of the major birch pollen allergen Bet v 1 were fused to the hepatitis B surface protein, PreS, in four recombinant fusion proteins containing different numbers and combinations of the peptides. Fusion proteins expressed in Escherichia coli and purified to homogeneity showed a lack of IgE reactivity and allergenic activity when tested with sera and basophils from patients allergic to birch pollen. Compared to Bet v 1 allergen, peptides PA and PB showed reduced T cell activation in PBMCs from allergic patients, whereas PreS fusion proteins induced less IL-5 and more IL-10 and IFN-γ. Immunization of rabbits with the fusion proteins, in particular with a PreS fusion protein 2PAPB-PreS, containing two copies of each peptide, induced high levels of IgG Abs against the major IgE-reactive site on Bet v 1 and related allergens. These IgG Abs inhibited allergic patients’ IgE binding to Bet v 1 better than did IgG induced by immunization with complete Bet v 1. Furthermore, 2PAPB-PreS–induced IgG inhibited Bet v 1–induced basophil activation in allergic patients and CD23-facilitated allergen presentation. Our study exemplifies novel beneficial features for a PreS carrier–based peptide vaccine for birch pollen, which, in addition to the established reduction in allergenic activity, include the enhanced focusing of blocking Ab responses toward IgE epitopes, immunomodulatory activity, and reduction of CD23-facilitated allergen presentation.


EBioMedicine | 2016

Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy

Petra Zieglmayer; Margarete Focke-Tejkl; René Schmutz; Patrick Lemell; René Zieglmayer; Milena Weber; Renata Kiss; Katharina Blatt; Peter Valent; Frank Stolz; Hans Huber; Angela Neubauer; Anette Knoll; Friedrich Horak; Rainer Henning; Rudolf Valenta

Background We have developed a recombinant B cell epitope-based vaccine (BM32) for allergen-specific immunotherapy (AIT) of grass pollen allergy. The vaccine contains recombinant fusion proteins consisting of allergen-derived peptides and the hepatitis B surface protein domain preS as immunological carrier. Methods We conducted a randomized, double-blind, placebo-controlled AIT study to determine safety, clinical efficacy and immunological mechanism of three subcutaneous injections of three BM32 doses adsorbed to aluminum hydroxide versus aluminum hydroxide (placebo) applied monthly to grass pollen allergic patients (n = 70). Primary efficacy endpoint was the difference in total nasal symptom score (TNSS) through grass pollen chamber exposure before treatment and 4 weeks after the last injection. Secondary clinical endpoints were total ocular symptom score (TOSS) and allergen-specific skin response evaluated by titrated skin prick testing (SPT) at the same time points. Treatment-related side effects were evaluated as safety endpoints. Changes in allergen-specific antibody, cellular and cytokine responses were measured in patients before and after treatment. Results Sixty-eight patients completed the trial. TNSS significantly decreased with mean changes of − 1.41 (BM32/20 μg) (P = 0.03) and − 1.34 (BM32/40 μg) (P = 0.003) whereas mean changes in the BM32/10 μg and placebo group were not significant. TOSS and SPT reactions showed a dose-dependent decrease. No systemic immediate type side effects were observed. Only few grade 1 systemic late phase reactions occurred in BM32 treated patients. The number of local injection site reactions was similar in actively and placebo-treated patients. BM32 induced highly significant allergen-specific IgG responses (P < 0.0001) but no allergen-specific IgE. Allergen-induced basophil activation was reduced in BM32 treated patients and addition of therapy-induced IgG significantly suppressed T cell activation (P = 0.0063). Conclusion The B cell epitope-based recombinant grass pollen allergy vaccine BM32 is well tolerated and few doses are sufficient to suppress immediate allergic reactions as well as allergen-specific T cell responses via a selective induction of allergen-specific IgG antibodies. (ClinicalTrials.gov number, NCT01445002.)


Clinical & Experimental Allergy | 2012

Carrier‐bound Alt a 1 peptides without allergenic activity for vaccination against Alternaria alternata allergy

Teresa E. Twaroch; M. Focke; K. Fleischmann; Nadja Balic; Christian Lupinek; Katharina Blatt; Rosetta Ferrara; Adriano Mari; Christof Ebner; Peter Valent; Susanne Spitzauer; Ines Swoboda; R. Valenta

The mould Alternaria alternata is a major elicitor of allergic asthma. Diagnosis and specific immunotherapy (SIT) of Alternaria allergy are often limited by the insufficient quality of natural mould extracts.


The FASEB Journal | 2012

Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms

Gregor Hoermann; Sabine Cerny-Reiterer; Harald Herrmann; Katharina Blatt; Martin Bilban; Heinz Gisslinger; Bettina Gisslinger; Leonhard Müllauer; Robert Kralovics; Christine Mannhalter; Peter Valent; Matthias Mayerhofer

The JAK2 mutation V617F is detectable in a majority of patients with Philadelphia chromosome‐negative myeloproliferative neoplasms (MPNs). Enforced expression of JAK2 V617F in mice induces myeloproliferation and bone marrow (BM) fibrosis, suggesting a causal role for the JAK2 mutant in the pathogenesis of MPNs. However, little is known about mechanisms and effector molecules contributing to JAK2 V617F‐induced myeloproliferation and fibrosis. We show that JAK2 V617F promotes expression of oncostatin M (OSM) in neoplastic myeloid cells. Correspondingly, OSM mRNA levels were increased in the BM of patients with MPNs (median 287% of ABL, range 22–1450%) compared to control patients (median 59% of ABL, range 12–264%; P< 0.0001). OSM secreted by JAK2 V617F+ cells stimulated growth of fibroblasts and microvascular endothelial cells and induced the production of angiogenic and profibrogenic cytokines (HGF, VEGF, and SDF‐1) in BM fibroblasts. All effects of MPN cell‐derived OSM were blocked by a neutralizing anti‐OSM antibody, whereas the production of OSM in MPN cells was suppressed by a pharmacologic JAK2 inhibitor or RNAi‐mediated knockdown of JAK2. In summary, JAK2 V617F‐mediated up‐regulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in MPNs, suggesting that OSM might serve as a novel therapeutic target molecule in these neoplasms.—Hoermann, G., Cerny‐Reiterer, S., Herrmann, H., Blatt, K., Bilban, M., Gisslinger, H., Gisslinger, B., Müllauer, L., Kralovics, R., Mannhalter, C., Valent, P., Mayerhofer, M. Identification of oncostatin M as a JAK2 V617F‐dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms. FASEB J. 26, 894–906 (2012). www.fasebj.org


The Journal of Allergy and Clinical Immunology | 2010

Hypoallergenic derivatives of the major birch pollen allergen Bet v 1 obtained by rational sequence reassembly

Raffaela Campana; Susanne Vrtala; Bernhard Maderegger; Peter Jertschin; Gottfried Stegfellner; Ines Swoboda; Margarete Focke-Tejkl; Katharina Blatt; Anna Gieras; Domen Zafred; Angela Neubauer; Peter Valent; Walter Keller; Susanne Spitzauer; Rudolf Valenta

BACKGROUND At least 100 million patients suffer from birch pollen allergy. OBJECTIVE Rational design of recombinant derivatives of the major birch pollen allergen, Bet v 1, characterized by reduced IgE reactivity, preservation of sequences relevant for the induction of allergen-specific blocking IgG, and maintenance of T-cell epitopes for immunotherapy of birch pollen allergy. METHODS Three recombinant mosaic proteins derived from Bet v 1 were generated by reassembly of codon-optimized genes coding for Bet v 1 fragments containing the elements for the induction of allergen-specific blocking IgG antibodies and the major T-cell epitopes. The proteins were expressed in Escherichia coli as recombinant mosaic molecules and compared with the Bet v 1 wild-type protein by chemical and structural methods, regarding IgE-binding and IgG-binding capacity, in basophil activation assays and tested for the in vivo induction of IgG responses. RESULTS Three recombinant Bet v 1 (rBet v 1) mosaic proteins with strongly reduced IgE reactivity and allergenic activity were expressed and purified. Immunization with the recombinant hypoallergens induced IgG antibodies that inhibited IgE reactivity of patients with allergy to Bet v 1 comparable to those induced with the rBet v 1 wild-type allergen. CONCLUSION We report the generation and preclinical characterization of 3 hypoallergenic rBet v 1 derivatives with suitable properties for immunotherapy of birch pollen allergy.

Collaboration


Dive into the Katharina Blatt's collaboration.

Top Co-Authors

Avatar

Peter Valent

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Harald Herrmann

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Wolfgang R. Sperr

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Gregor Hoermann

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Peter

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Gregor Eisenwort

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Emir Hadzijusufovic

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Irina Sadovnik

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge