Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emir Salih Magden is active.

Publication


Featured researches published by Emir Salih Magden.


Optics Letters | 2016

Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities.

Gurpreet Singh; Purnawirman; Jonathan D. B. Bradley; Nanxi Li; Emir Salih Magden; Michele Moresco; Thomas N. Adam; G. Leake; Douglas D. Coolbaugh; Michael R. Watts

This Letter reports on an optical pumping scheme, termed resonant pumping, for an erbium-doped distributed feedback (DFB) waveguide laser. The scheme uses two mirrors on either side of the DFB laser, forming a pump cavity that recirculates the unabsorbed pump light. Symmetric distributed Bragg reflectors are used as the mirrors and are designed by matching the external and internal quality factors of the cavity. Experimental demonstration shows lasing at an optical communication wavelength of around 1560 nm and an improvement of 1.8 times in the lasing efficiency, when the DFB laser is pumped on-resonance.


Optics Express | 2016

C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity

Nanxi Li; Erman Timurdogan; Christopher V. Poulton; Matthew J. Byrd; Emir Salih Magden; Zhan Su; Purnawirman; Gerald Leake; Douglas D. Coolbaugh; Diedrik Vermeulen; Michael R. Watts

We demonstrate an erbium-doped fiber laser with a tunable silicon microring cavity. We measured a narrow laser linewidth (16 kHz) and single-mode continuous-wave emission over the C-band (1530nm-to-1560nm) at a swept-wavelength rate of 22,600nm/s or 3106THz/s.


Optics Express | 2017

Ultra-narrow-linewidth Al_2O_3:Er^3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform

Purnawirman; Nanxi Li; Emir Salih Magden; Gurpreet Singh; Neetesh Singh; Anna Baldycheva; Ehsan Shah Hosseini; Jie Sun; Michele Moresco; Thomas N. Adam; G. Leake; Douglas D. Coolbaugh; Jonathan D. B. Bradley; Michael R. Watts

We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infra-red wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 ± 0.3 kHz for the DPS-DFB laser, as compared to ΔνQPS = 30.4 ± 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (R-SHDI).


Light-Science & Applications | 2018

Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm

Neetesh Singh; Ming Xin; Diedrik Vermeulen; Katia Shtyrkova; Nanxi Li; Patrick T. Callahan; Emir Salih Magden; Alfonso Ruocco; Nicholas M. Fahrenkopf; Christopher Baiocco; B. P.-P. Kuo; Stojan Radic; Erich P. Ippen; Franz X. Kärtner; Michael R. Watts

Efficient complementary metal-oxide semiconductor-based nonlinear optical devices in the near-infrared are in strong demand. Due to two-photon absorption in silicon, however, much nonlinear research is shifting towards unconventional photonics platforms. In this work, we demonstrate the generation of an octave-spanning coherent supercontinuum in a silicon waveguide covering the spectral region from the near- to shortwave-infrared. With input pulses of 18 pJ in energy, the generated signal spans the wavelength range from the edge of the silicon transmission window, approximately 1.06 to beyond 2.4 μm, with a −20 dB bandwidth covering 1.124–2.4 μm. An octave-spanning supercontinuum was also observed at the energy levels as low as 4 pJ (−35 dB bandwidth). We also measured the coherence over an octave, obtaining , in good agreement with the simulations. In addition, we demonstrate optimization of the third-order dispersion of the waveguide to strengthen the dispersive wave and discuss the advantage of having a soliton at the long wavelength edge of an octave-spanning signal for nonlinear applications. This research paves the way for applications, such as chip-scale precision spectroscopy, optical coherence tomography, optical frequency metrology, frequency synthesis and wide-band wavelength division multiplexing in the telecom window.


Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (2016), paper IW1A.3 | 2016

Ultra-Compact CMOS-Compatible Ytterbium Microlaser

Zhan Su; Jonathan D. B. Bradley; Nanxi Li; Emir Salih Magden; Purnawirman Purnawirman; Daniel Coleman; Nicholas M. Fahrenkopf; Christopher Baiocco; Thomas N. Adam; Gerald Leake; Douglas D. Coolbaugh; Diedrik Vermeulen; Michael R. Watts

We demonstrate a waveguide-coupled trench-based ytterbium microlaser, achieving a sub-milliwatt lasing threshold and a 1.9% slope efficiency within an ultra-compact 40-µm-radius cavity while maintaining full compatibility with a CMOS foundry process.


conference on lasers and electro optics | 2016

Fully CMOS-compatible integrated distributed feedback laser with 250 °C fabricated Al 2 O 3 :Er 3+ gain medium

Emir Salih Magden; Purnawirman; Nanxi Li; Gurpreet Singh; Jonathan D. B. Bradley; Gale S. Petrich; Gerald Leake; Douglas D. Coolbaugh; Michael R. Watts; Leslie A. Kolodziejski

We demonstrate a DFB laser with a record low temperature (250 °C) fabrication process of low-loss (>0.1 dB/cm) amorphous Al<inf>2</inf>O<inf>3</inf>:Er<sup>3+</sup> gain medium by utilizing the substrate bias, facilitating laser integration in a fully CMOS-compatible platform.


Optics Express | 2017

Monolithically-integrated distributed feedback laser compatible with CMOS processing

Emir Salih Magden; Nanxi Li; Purnawirman; Jonathan D. B. Bradley; Neetesh Singh; Alfonso Ruocco; Gale S. Petrich; Gerald Leake; Douglas D. Coolbaugh; Erich P. Ippen; Michael R. Watts; Leslie A. Kolodziejski

An optically-pumped, integrated distributed feedback laser is demonstrated using a CMOS compatible process, where a record-low-temperature deposited gain medium enables integration with active devices such as modulators and detectors. A pump threshold of 24.9 mW and a slope efficiency of 1.3 % is demonstrated at the lasing wavelength of 1552.98 nm. The rare-earth-doped aluminum oxide, used as the gain medium in this laser, is deposited by a substrate-bias-assisted reactive sputtering process. This process yields optical quality films with 0.1 dB/cm background loss at the deposition temperature of 250 °C, and therefore is fully compatible as a back-end-of-line CMOS process. The aforementioned lasers performance is comparable to previous lasers having gain media fabricated at much higher temperatures (> 550 °C). This work marks a crucial step towards monolithic integration of amplifiers and lasers in silicon microphotonic systems.


Silicon Photonics XIII | 2018

Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform

Nanxi Li; Neetesh Singh; Purnawirman Purnawirman; Emir Salih Magden; Gurpreet Singh; Anna Baldycheva; Ehsan Shah Hosseini; Jie Sun; Michele Moresco; Thomas N. Adam; Gerald Leake; Douglas D. Coolbaugh; Jonathan D. B. Bradley; Michael R. Watts

We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950–2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 ± 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 ± 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.


Optics Express | 2018

Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform

Nanxi Li; Diedrik Vermeulen; Zhan Su; Emir Salih Magden; Ming Xin; Neetesh Singh; Alfonso Ruocco; Jelena Notaros; Christopher V. Poulton; Erman Timurdogan; Christopher Baiocco; Michael R. Watts

A tunable laser source is a crucial photonic component for many applications, such as spectroscopic measurements, wavelength division multiplexing (WDM), frequency-modulated light detection and ranging (LIDAR), and optical coherence tomography (OCT). In this article, we demonstrate the first monolithically integrated erbium-doped tunable laser on a complementary-metal-oxide-semiconductor (CMOS)-compatible silicon photonics platform. Erbium-doped Al2O3 sputtered on top is used as a gain medium to achieve lasing. The laser achieves a tunability from 1527 nm to 1573 nm, with a >40 dB side mode suppression ratio (SMSR). The wide tuning range (46 nm) is realized with a Vernier cavity, formed by two Si3N4 microring resonators. With 107 mW on-chip 980 nm pump power, up to 1.6 mW output lasing power is obtained with a 2.2% slope efficiency. The maximum output power is limited by pump power. Fine tuning of the laser wavelength is demonstrated by using the gain cavity phase shifter. Signal response times are measured to be around 200 μs and 35 µs for the heaters used to tune the Vernier rings and gain cavity longitudinal mode, respectively. The linewidth of the laser is 340 kHz, measured via a self-delay heterodyne detection method. Furthermore, the laser signal is stabilized by continuous locking to a mode-locked laser (MLL) over 4900 seconds with a measured peak-to-peak frequency deviation below 10 Hz.


Nature Communications | 2018

Transmissive silicon photonic dichroic filters with spectrally selective waveguides

Emir Salih Magden; Nanxi Li; Manan Raval; Christopher V. Poulton; Alfonso Ruocco; Neetesh Singh; Diedrik Vermeulen; Erich P. Ippen; Leslie A. Kolodziejski; Michael R. Watts

Many optical systems require broadband filters with sharp roll-offs for efficiently splitting or combining light across wide spectra. While free space dichroic filters can provide broadband selectivity, on-chip integration of these high-performance filters is crucial for the scalability of photonic applications in multi-octave interferometry, spectroscopy, and wideband wavelength-division multiplexing. Here we present the theory, design, and experimental characterization of integrated, transmissive, 1 × 2 port dichroic filters using spectrally selective waveguides. Mode evolution through adiabatic transitions in the demonstrated filters allows for single cutoff and flat-top responses with low insertion losses and octave-wide simulated bandwidths. Filters with cutoffs around 1550 and 2100 nm are fabricated on a silicon-on-insulator platform with standard complementary metal-oxide-semiconductor processes. A filter roll-off of 2.82 dB nm−1 is achieved while maintaining ultra-broadband operation. This new class of nanophotonic dichroic filters can lead to new paradigms in on-chip communications, sensing, imaging, optical synthesis, and display applications.Optical filters are an integral part of many optical devices and circuits. Here, Magden et al. use a design based on mode evolution to demonstrate CMOS-compatible dichroic filters with more than an octave bandwidth, sharp roll-off and transmissive short- and long-wavelength outputs

Collaboration


Dive into the Emir Salih Magden's collaboration.

Top Co-Authors

Avatar

Michael R. Watts

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nanxi Li

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan D. B. Bradley

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Douglas D. Coolbaugh

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Gerald Leake

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Neetesh Singh

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Diedrik Vermeulen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhan Su

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alfonso Ruocco

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erich P. Ippen

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge