Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enikö Sonkoly is active.

Publication


Featured researches published by Enikö Sonkoly.


Seminars in Cancer Biology | 2008

MicroRNAs and immunity: Novel players in the regulation of normal immune function and inflammation

Enikö Sonkoly; Mona Ståhle; Andor Pivarcsi

The discovery of microRNAs (miRNAs) is one of the major scientific breakthroughs in recent years and has revolutionized the way we look at gene regulation. Although we are still at a very early stage in understanding their impact on immunity, miRNAs are changing the way we think about the development of the immune system and regulation of immune functions. MiRNAs are implicated in establishing and maintaining the cell fate of immune cells (e.g. miR-181a and miR-223), and they are involved in innate immunity by regulating Toll-like receptor signaling and ensuing cytokine response (e.g. miR-146). Moreover, miRNAs regulate central elements of the adaptive immune response such as antigen presentation (e.g. miR-155) and T cell receptor signaling (miR-181a). Recent evidence showing altered miRNA expression in chronic inflammatory diseases (e.g. miR-203 and miR-146) suggests their involvement in immune-mediated diseases. Furthermore, miRNAs have been implicated in viral immune escape and anti-viral defense (e.g. miR-196). In this review, we will summarize the latest findings about the role of miRNAs in the development of the immune system and regulation of immune functions and inflammation.


Clinical and Experimental Dermatology | 2008

MicroRNAs: novel regulators in skin inflammation

Enikö Sonkoly; Mona Ståhle; Andor Pivarcsi

Compelling evidence indicates that microRNAs (miRNAs), short, non‐protein coding RNAs, are critical for the development and survival of multicellular organisms. Recently, miRNAs were implicated in the pathogenesis of psoriasis and atopic eczema (AE), the two most common chronic inflammatory disorders in skin. In particular, miR‐203, the first skin‐specific miRNA, showing an intriguing expression profile being confined to skin epithelium, is specifically overexpressed in psoriasis. MiR‐146a, another miRNA showing specific upregulation in psoriasis, is involved in the regulation of innate immune responses and the tumour necrosis factor (TNF)‐α pathway. Interestingly, miR‐125b, another miRNA involved in the TNF‐α pathway, is also deregulated in psoriasis and AE. As skin inflammation may serve as a model for chronic inflammatory disorders, it is likely that miRNAs involved in skin inflammation will eventually emerge in other inflammatory or autoimmune disorders, and some of these may become disease markers and therapeutic targets. In this review we present an overview of what is currently known about the roles of miRNAs in chronic inflammatory skin disorders.


The Journal of Allergy and Clinical Immunology | 2010

MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte–associated antigen 4

Enikö Sonkoly; Peter Janson; Marja-Leena Majuri; Terhi Savinko; Nanna Fyhrquist; Liv Eidsmo; Ning Xu; Florian Meisgen; Tianling Wei; Maria Bradley; Jan Stenvang; Sakari Kauppinen; Harri Alenius; Antti Lauerma; Bernhard Homey; Ola Winqvist; Mona Ståhle; Andor Pivarcsi

BACKGROUND MicroRNAs (miRNAs) are short noncoding RNAs that suppress gene expression at the posttranscriptional level. Atopic dermatitis is a common chronic inflammatory skin disease characterized by the presence of activated T cells within the skin. OBJECTIVE We sought to explore the role of miRNAs in the pathogenesis of atopic dermatitis. METHODS Global miRNA expression in healthy and lesional skin of patients with atopic dermatitis was compared by using TaqMan MicroRNA Low Density Arrays. miR-155 expression in tissues and cells was quantified by means of quantitative real-time PCR. The cellular localization of miR-155 was analyzed by means of in situ hybridization. The regulation of cytotoxic T lymphocyte-associated antigen (CTLA-4) by miR-155 was investigated by using luciferase reporter assays and flow cytometry. CTLA-4 expression and functional assays were performed on T(H) cells overexpressing miR-155. RESULTS miR-155 was one of the highest-ranked upregulated miRNAs in patients with atopic dermatitis. In the skin miR-155 was predominantly expressed in infiltrating immune cells. miR-155 was upregulated during T-cell differentiation/activation and was markedly induced by T-cell activators in PBMCs in vitro and by superantigens and allergens in the skin in vivo. CTLA-4, an important negative regulator of T-cell activation, was identified as a direct target of miR-155. Overexpression of miR-155 in T(H) cells resulted in decreased CTLA-4 levels accompanied by an increased proliferative response. CONCLUSION miR-155 is significantly overexpressed in patients with atopic dermatitis and might contribute to chronic skin inflammation by increasing the proliferative response of T(H) cells through the downregulation of CTLA-4.


International Reviews of Immunology | 2009

microRNAs in Inflammation

Enikö Sonkoly; Andor Pivarcsi

microRNAs are small noncoding RNAs that regulate protein-coding genes via posttranscriptional repression. Most protein-coding genes are subjected to microRNA-mediated regulation, making the potential effect of these small molecules on regulatory networks enormous. Recent research has implicated miRNAs in the regulation of innate and adaptive immune responses as well as inflammatory networks in various cell and tissue types. In this review, we summarize the current knowledge about miRNAs in immunity and inflammation, focusing on the recent results on miRNAs involved in the regulation of immune responses and inflammatory diseases.


Journal of Investigative Dermatology | 2011

MiR-125b, a MicroRNA Downregulated in Psoriasis, Modulates Keratinocyte Proliferation by Targeting FGFR2

Ning Xu; Petter Brodin; Tianling Wei; Florian Meisgen; Liv Eidsmo; Nikoletta Nagy; Lajos Kemény; Mona Ståhle; Enikö Sonkoly; Andor Pivarcsi

MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that play important roles in the regulation of gene expression. We previously identified a characteristic miRNA expression profile in psoriasis, distinct from that of healthy skin. One of the most downregulated miRNAs in psoriasis skin was microRNA-125b (miR-125b). In this study, we aimed to identify the potential role(s) of miR-125b in psoriasis pathogenesis. In situ hybridization results showed that the major cell type responsible for decreased miR-125b levels in psoriasis lesions was the keratinocyte. Overexpression of miR-125b in primary human keratinocytes suppressed proliferation and induced the expression of several known differentiation markers. Conversely, inhibition of endogenous miR-125b promoted cell proliferation and delayed differentiation. Fibroblast growth factor receptor 2 (FGFR2) was identified as one of the direct targets for suppression by miR-125b by luciferase reporter assay. The expression of miR-125b and FGFR2 was inversely correlated in both transfected keratinocytes and in psoriatic skin. Knocking down FGFR2 expression by siRNA suppressed keratinocyte proliferation, but did not enhance differentiation. Altogether, our results demonstrate a role for miR-125b in the regulation of keratinocyte proliferation and differentiation, partially through the regulation of FGFR2. Loss of miR-125b in psoriasis skin may contribute to hyperproliferation and aberrant differentiation of keratinocytes.


Journal of Biological Chemistry | 2012

MicroRNA-125b Down-regulates Matrix Metallopeptidase 13 and Inhibits Cutaneous Squamous Cell Carcinoma Cell Proliferation, Migration, and Invasion

Ning Xu; Lingyun Zhang; Florian Meisgen; Masako Harada; Johan Heilborn; Bernhard Homey; Dan Grandér; Mona Ståhle; Enikö Sonkoly; Andor Pivarcsi

Background: The role of microRNAs in cutaneous squamous cell carcinoma (cSCC) is not well understood. Results: cSCC has a unique miRNAome. MicroRNA-125b is down-regulated in human cSCC and suppresses growth and motility of cSCC cells through targeting Matrix Metallopeptidase 13. Conclusion: MicroRNA-125b may play a tumor suppressive role in cSCC. Significance: This study suggests a role for microRNAs in cSCC pathogenesis. Cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer. Although dysregulation of microRNAs (miRNAs) is known to be involved in a variety of cancers, the role of miRNAs in cSCC is unclear. In this study, we aimed to identify tumor suppressive and oncogenic miRNAs involved in the pathogenesis of cSCC. MiRNA expression profiles in healthy skins (n = 4) and cSCCs (n = 4) were analyzed using MicroRNA Low Density Array. MiR-125b expression was analyzed by quantitative real-time PCR and in situ hybridization in skin biopsies from 40 healthy donors, 13 actinic keratosis, and 74 cSCC patients. The effect of miR-125b was analyzed in wound closure, colony formation, migration, and invasion assays in two cSCC cell lines, UT-SCC-7 and A431. The genes regulated by miR-125b in cSCC were identified by microarray analysis and its direct target was validated by luciferase reporter assay. Comparing cSCC with healthy skin, we identified four up-regulated miRNAs (miR-31, miR-135b, miR-21, and miR-223) and 54 down-regulated miRNAs, including miR-125b, whose function was further examined. We found that miR-125b suppressed proliferation, colony formation, migratory, and invasive capacity of cSCC cells. Matrix metallopeptidase 13 (MMP13) was identified as a direct target suppressed by miR-125b, and there was an inverse relationship between the expression of miR-125b and MMP13 in cSCC. Knockdown of MMP13 expression phenocopied the effects of miR-125b overexpression. These findings provide a novel molecular mechanism by which MMP13 is up-regulated in cSCCs and indicate that miR-125b plays a tumor suppressive role in cSCC.


Journal of Investigative Dermatology | 2010

Protein Kinase C-Dependent Upregulation of miR-203 Induces the Differentiation of Human Keratinocytes

Enikö Sonkoly; Tianling Wei; Elizabeth Pavez Loriè; Hiroyuki Suzuki; Mitsuyasu Kato; Hans Törmä; Mona Ståhle; Andor Pivarcsi

Terminal differentiation of keratinocytes is a multistep process that requires a coordinated program of gene expression. We aimed to explore the possible involvement of a previously unreported class of non-coding RNA genes, microRNAs (miRNAs) in keratinocyte differentiation by using miRNA expression profiling. Out of 365 miRNAs tested, 7 showed significant change between keratinocytes cultured in low or high calcium concentration. The highest-ranked upregulated gene was miR-203, whose expression was significantly upregulated in response to calcium and other inducers of keratinocyte differentiation such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and vitamin D(3). Differentiation-induced upregulation of miR-203 expression was blocked by treatment with specific inhibitors of protein kinase C (PKC), GF109203X, and Ro31-8220. Moreover, our results showed that the activator protein-1 (AP-1) proteins c-Jun and JunB regulate miR-203 expression in keratinocytes. In contrast to inducers of keratinocyte differentiation, epidermal growth factor and keratinocyte growth factor suppressed miR-203 expression in keratinocytes below the basal level. Overexpression of miR-203 in keratinocytes resulted in enhanced differentiation, whereas inhibition of miR-203 suppressed calcium-induced terminal differentiation as judged by involucrin expression. These results suggest that upregulation of miR-203 in human keratinocytes is required for their differentiation and is dependent on the activation of the PKC/AP-1 pathway.


Journal of Immunology | 2004

CC Chemokine Ligand 18, An Atopic Dermatitis-Associated and Dendritic Cell-Derived Chemokine, Is Regulated by Staphylococcal Products and Allergen Exposure

Andor Pivarcsi; Michael Gombert; Marie-Caroline Dieu-Nosjean; Antti Lauerma; Robert Kubitza; Stephan Meller; Juliane Rieker; Anja Müller; Ludivine Da Cunha; Anna Haahtela; Enikö Sonkoly; Wolf H. Fridman; Harri Alenius; Lajos Kemény; Thomas Ruzicka; Albert Zlotnik; Bernhard Homey

Atopic dermatitis is a chronic inflammatory skin disease with a steadily increasing prevalence. Exposure to allergens or bacterial superantigens triggers T and dendritic cell (DC) recruitment and induces atopic skin inflammation. In this study, we report that among all known chemokines CCL18/DC-CK1/PARC represents the most highly expressed ligand in atopic dermatitis. Moreover, CCL18 expression is associated with an atopic dermatitis phenotype when compared with other chronic inflammatory skin diseases. DCs either dispersed within the dermis or clustering at sites showing perivascular infiltrates are abundant sources of CCL18. In vitro, microbial products including LPS, peptidoglycan, and mannan, as well as the T cell-derived activation signal CD40L, induced CCL18 in monocytes. In contrast to monocytes, monocyte-derived, interstitial-type, and Langerhans-type DCs showed a constitutive and abundant expression of CCL18. In comparison to Langerhans cells, interstitial-type DCs produced higher constitutive levels of CCL18. In vivo, topical exposure to the relevant allergen or the superantigen staphylococcal enterotoxin B, resulted in a significant induction of CCL18 in atopic dermatitis patients. Furthermore, in nonatopic NiSO4-sensitized individuals, only relevant allergen but not irritant exposure resulted in the induction of CCL18. Taken together, findings of the present study demonstrate that CCL18 is associated with an atopy/allergy skin phenotype, and is expressed at the interface between the environment and the host by cells constantly screening foreign Ags. Its regulation by allergen exposure and microbial products suggests an important role for CCL18 in the initiation and amplification of atopic skin inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Tumor immune escape by the loss of homeostatic chemokine expression

Andor Pivarcsi; Anja Müller; Andreas Hippe; Juliane Rieker; Anke van Lierop; Martin Steinhoff; Stephan Seeliger; Robert Kubitza; Ulrich Pippirs; Stephan Meller; Peter Arne Gerber; Ruediger Liersch; Erich Buenemann; Enikö Sonkoly; Ulrike Wiesner; Thomas K. Hoffmann; Leonid Schneider; Roland P. Piekorz; Elaine Enderlein; J. Reifenberger; Ulrich Peter Rohr; Rainer Haas; Petra Boukamp; Ingo Haase; Bernd Nürnberg; Thomas Ruzicka; Albert Zlotnik; Bernhard Homey

The novel keratinocyte-specific chemokine CCL27 plays a critical role in the organization of skin-associated immune responses by regulating T cell homing under homeostatic and inflammatory conditions. Here we demonstrate that human keratinocyte-derived skin tumors may evade T cell-mediated antitumor immune responses by down-regulating the expression of CCL27 through the activation of epidermal growth factor receptor (EGFR)–Ras–MAPK-signaling pathways. Compared with healthy skin, CCL27 mRNA and protein expression was progressively lost in transformed keratinocytes of actinic keratoses and basal and squamous cell carcinomas. In vivo, precancerous skin lesions as well as cutaneous carcinomas showed significantly elevated levels of phosphorylated ERK compared with normal skin, suggesting the activation of EGFR–Ras signaling pathways in keratinocyte-derived malignancies. In vitro, exogenous stimulation of the EGFR–Ras signaling pathway through EGF or transfection of the dominant-active form of the Ras oncogene (H-RasV12) suppressed whereas an EGFR tyrosine kinase inhibitor increased CCL27 mRNA and protein production in keratinocytes. In mice, neutralization of CCL27 led to decreased leukocyte recruitment to cutaneous tumor sites and significantly enhanced primary tumor growth. Collectively, our data identify a mechanism of skin tumors to evade host antitumor immune responses.


Journal of Immunology | 2012

MicroRNA-31 Is Overexpressed in Psoriasis and Modulates Inflammatory Cytokine and Chemokine Production in Keratinocytes via Targeting Serine/Threonine Kinase 40

Ning Xu; Florian Meisgen; Lynn M. Butler; Gangwen Han; Xiao-Jing Wang; Cecilia Söderberg-Nauclér; Mona Ståhle; Andor Pivarcsi; Enikö Sonkoly

Psoriasis is characterized by a specific microRNA expression profile, distinct from that of healthy skin. MiR-31 is one of the most highly overexpressed microRNAs in psoriasis skin; however, its biological role in the disease has not been studied. In this study, we show that miR-31 is markedly overexpressed in psoriasis keratinocytes. Specific inhibition of miR-31 suppressed NF-κB–driven promoter luciferase activity and the basal and TNF-α–induced production of IL-1β, CXCL1/growth-related oncogene-α, CXCL5/epithelial-derived neutrophil-activating peptide 78, and CXCL8/IL-8 in human primary keratinocytes. Moreover, interference with endogenous miR-31 decreased the ability of keratinocytes to activate endothelial cells and attract leukocytes. By microarray expression profiling, we identified genes regulated by miR-31 in keratinocytes. Among these genes, we identified serine/threonine kinase 40 (STK40), a negative regulator of NF-κB signaling, as a direct target for miR-31. Silencing of STK40 rescued the suppressive effect of miR-31 inhibition on cytokine/chemokine expression, indicating that miR-31 regulates cytokine/chemokine expression via targeting STK40 in keratinocytes. Finally, we demonstrated that TGF-β1, a cytokine highly expressed in psoriasis epidermis, upregulated miR-31 expression in keratinocytes in vitro and in vivo. Collectively, our findings suggest that overexpression of miR-31 contributes to skin inflammation in psoriasis lesions by regulating the production of inflammatory mediators and leukocyte chemotaxis to the skin. Our data indicate that inhibition of miR-31 may be a potential therapeutic option in psoriasis.

Collaboration


Dive into the Enikö Sonkoly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Xu

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Bernhard Homey

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge