Florian Meisgen
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florian Meisgen.
The Journal of Allergy and Clinical Immunology | 2010
Enikö Sonkoly; Peter Janson; Marja-Leena Majuri; Terhi Savinko; Nanna Fyhrquist; Liv Eidsmo; Ning Xu; Florian Meisgen; Tianling Wei; Maria Bradley; Jan Stenvang; Sakari Kauppinen; Harri Alenius; Antti Lauerma; Bernhard Homey; Ola Winqvist; Mona Ståhle; Andor Pivarcsi
BACKGROUND MicroRNAs (miRNAs) are short noncoding RNAs that suppress gene expression at the posttranscriptional level. Atopic dermatitis is a common chronic inflammatory skin disease characterized by the presence of activated T cells within the skin. OBJECTIVE We sought to explore the role of miRNAs in the pathogenesis of atopic dermatitis. METHODS Global miRNA expression in healthy and lesional skin of patients with atopic dermatitis was compared by using TaqMan MicroRNA Low Density Arrays. miR-155 expression in tissues and cells was quantified by means of quantitative real-time PCR. The cellular localization of miR-155 was analyzed by means of in situ hybridization. The regulation of cytotoxic T lymphocyte-associated antigen (CTLA-4) by miR-155 was investigated by using luciferase reporter assays and flow cytometry. CTLA-4 expression and functional assays were performed on T(H) cells overexpressing miR-155. RESULTS miR-155 was one of the highest-ranked upregulated miRNAs in patients with atopic dermatitis. In the skin miR-155 was predominantly expressed in infiltrating immune cells. miR-155 was upregulated during T-cell differentiation/activation and was markedly induced by T-cell activators in PBMCs in vitro and by superantigens and allergens in the skin in vivo. CTLA-4, an important negative regulator of T-cell activation, was identified as a direct target of miR-155. Overexpression of miR-155 in T(H) cells resulted in decreased CTLA-4 levels accompanied by an increased proliferative response. CONCLUSION miR-155 is significantly overexpressed in patients with atopic dermatitis and might contribute to chronic skin inflammation by increasing the proliferative response of T(H) cells through the downregulation of CTLA-4.
Journal of Investigative Dermatology | 2011
Ning Xu; Petter Brodin; Tianling Wei; Florian Meisgen; Liv Eidsmo; Nikoletta Nagy; Lajos Kemény; Mona Ståhle; Enikö Sonkoly; Andor Pivarcsi
MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that play important roles in the regulation of gene expression. We previously identified a characteristic miRNA expression profile in psoriasis, distinct from that of healthy skin. One of the most downregulated miRNAs in psoriasis skin was microRNA-125b (miR-125b). In this study, we aimed to identify the potential role(s) of miR-125b in psoriasis pathogenesis. In situ hybridization results showed that the major cell type responsible for decreased miR-125b levels in psoriasis lesions was the keratinocyte. Overexpression of miR-125b in primary human keratinocytes suppressed proliferation and induced the expression of several known differentiation markers. Conversely, inhibition of endogenous miR-125b promoted cell proliferation and delayed differentiation. Fibroblast growth factor receptor 2 (FGFR2) was identified as one of the direct targets for suppression by miR-125b by luciferase reporter assay. The expression of miR-125b and FGFR2 was inversely correlated in both transfected keratinocytes and in psoriatic skin. Knocking down FGFR2 expression by siRNA suppressed keratinocyte proliferation, but did not enhance differentiation. Altogether, our results demonstrate a role for miR-125b in the regulation of keratinocyte proliferation and differentiation, partially through the regulation of FGFR2. Loss of miR-125b in psoriasis skin may contribute to hyperproliferation and aberrant differentiation of keratinocytes.
Journal of Biological Chemistry | 2012
Ning Xu; Lingyun Zhang; Florian Meisgen; Masako Harada; Johan Heilborn; Bernhard Homey; Dan Grandér; Mona Ståhle; Enikö Sonkoly; Andor Pivarcsi
Background: The role of microRNAs in cutaneous squamous cell carcinoma (cSCC) is not well understood. Results: cSCC has a unique miRNAome. MicroRNA-125b is down-regulated in human cSCC and suppresses growth and motility of cSCC cells through targeting Matrix Metallopeptidase 13. Conclusion: MicroRNA-125b may play a tumor suppressive role in cSCC. Significance: This study suggests a role for microRNAs in cSCC pathogenesis. Cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer. Although dysregulation of microRNAs (miRNAs) is known to be involved in a variety of cancers, the role of miRNAs in cSCC is unclear. In this study, we aimed to identify tumor suppressive and oncogenic miRNAs involved in the pathogenesis of cSCC. MiRNA expression profiles in healthy skins (n = 4) and cSCCs (n = 4) were analyzed using MicroRNA Low Density Array. MiR-125b expression was analyzed by quantitative real-time PCR and in situ hybridization in skin biopsies from 40 healthy donors, 13 actinic keratosis, and 74 cSCC patients. The effect of miR-125b was analyzed in wound closure, colony formation, migration, and invasion assays in two cSCC cell lines, UT-SCC-7 and A431. The genes regulated by miR-125b in cSCC were identified by microarray analysis and its direct target was validated by luciferase reporter assay. Comparing cSCC with healthy skin, we identified four up-regulated miRNAs (miR-31, miR-135b, miR-21, and miR-223) and 54 down-regulated miRNAs, including miR-125b, whose function was further examined. We found that miR-125b suppressed proliferation, colony formation, migratory, and invasive capacity of cSCC cells. Matrix metallopeptidase 13 (MMP13) was identified as a direct target suppressed by miR-125b, and there was an inverse relationship between the expression of miR-125b and MMP13 in cSCC. Knockdown of MMP13 expression phenocopied the effects of miR-125b overexpression. These findings provide a novel molecular mechanism by which MMP13 is up-regulated in cSCCs and indicate that miR-125b plays a tumor suppressive role in cSCC.
Journal of Immunology | 2012
Ning Xu; Florian Meisgen; Lynn M. Butler; Gangwen Han; Xiao-Jing Wang; Cecilia Söderberg-Nauclér; Mona Ståhle; Andor Pivarcsi; Enikö Sonkoly
Psoriasis is characterized by a specific microRNA expression profile, distinct from that of healthy skin. MiR-31 is one of the most highly overexpressed microRNAs in psoriasis skin; however, its biological role in the disease has not been studied. In this study, we show that miR-31 is markedly overexpressed in psoriasis keratinocytes. Specific inhibition of miR-31 suppressed NF-κB–driven promoter luciferase activity and the basal and TNF-α–induced production of IL-1β, CXCL1/growth-related oncogene-α, CXCL5/epithelial-derived neutrophil-activating peptide 78, and CXCL8/IL-8 in human primary keratinocytes. Moreover, interference with endogenous miR-31 decreased the ability of keratinocytes to activate endothelial cells and attract leukocytes. By microarray expression profiling, we identified genes regulated by miR-31 in keratinocytes. Among these genes, we identified serine/threonine kinase 40 (STK40), a negative regulator of NF-κB signaling, as a direct target for miR-31. Silencing of STK40 rescued the suppressive effect of miR-31 inhibition on cytokine/chemokine expression, indicating that miR-31 regulates cytokine/chemokine expression via targeting STK40 in keratinocytes. Finally, we demonstrated that TGF-β1, a cytokine highly expressed in psoriasis epidermis, upregulated miR-31 expression in keratinocytes in vitro and in vivo. Collectively, our findings suggest that overexpression of miR-31 contributes to skin inflammation in psoriasis lesions by regulating the production of inflammatory mediators and leukocyte chemotaxis to the skin. Our data indicate that inhibition of miR-31 may be a potential therapeutic option in psoriasis.
Oncogenesis | 2012
Enikö Sonkoly; Jakob Lovén; Ning Xu; Florian Meisgen; Tianling Wei; Petter Brodin; V. Jaks; Maria Kasper; Takashi Shimokawa; Masako Harada; Johan Heilborn; M. A. Hedblad; A. Hippe; Dan Grandér; Bernhard Homey; Peter G. Zaphiropoulos; Marie Arsenian-Henriksson; Mona Ståhle; Andor Pivarcsi
Basal cell carcinoma (BCC) of the skin represents the most common malignancy in humans. MicroRNAs (miRNAs), small regulatory RNAs with pleiotropic function, are commonly misregulated in cancer. Here we identify miR-203, a miRNA abundantly and preferentially expressed in skin, to be downregulated in BCCs. We show that activation of the Hedgehog (HH) pathway, critically involved in the pathogenesis of BCCs, as well as the EGFR/MEK/ERK/c-JUN signaling pathway suppresses miR-203. We identify c-JUN, a key effector of the HH pathway, as a novel direct target for miR-203 in vivo. Further supporting the role of miR-203 as a tumor suppressor, in vivo delivery of miR-203 mimics in a BCC mouse model results in the reduction of tumor growth. Our results identify a regulatory circuit involving miR-203 and c-JUN, which provides functional control over basal cell proliferation and differentiation. We propose that miR-203 functions as a ‘bona fide’ tumor suppressor in BCC, whose suppressed expression contributes to oncogenic transformation via derepression of multiple stemness- and proliferation-related genes, and its overexpression could be of therapeutic value.
Journal of Investigative Dermatology | 2014
Florian Meisgen; Ning Xu Landén; Aoxue Wang; Bence Rethi; Charbel Bouez; Michela Zuccolo; Audrey Gueniche; Mona Ståhle; Enikö Sonkoly; Lionel Breton; Andor Pivarcsi
Keratinocytes represent the first line of defense against pathogens in the skin and have important roles in initiating and regulating inflammation during infection and autoimmunity. Here we investigated the role of miR-146a in the regulation of the innate immune response of keratinocytes. Toll-like receptor 2 (TLR2) stimulation of primary human keratinocytes resulted in an NF-κB- and mitogen-activated protein kinase-dependent upregulation of miR-146a expression, which was surprisingly long lasting, contrasting with the rapid and transient induction of inflammatory mediators. Overexpression of miR-146a significantly suppressed the production of IL-8, CCL20, and tumor necrosis factor-α, which functionally suppressed the chemotactic attraction of neutrophils by keratinocytes. Inhibition of endogenous miR-146a induced the production of inflammatory mediators even in nonstimulated keratinocytes, and potentiated the effect of TLR2 stimulation. Transcriptomic profiling revealed that miR-146a suppresses the expression of a large number of immune-related genes in keratinocytes. MiR-146a downregulated interleukin-1 receptor-associated kinase 1 and TNF receptor-associated factor 6, two key adapter molecules downstream of TLR signaling, and suppressed NF-κB promoter-binding activity as shown by promoter luciferase experiments. Together, these data identify miR-146a as a regulatory element in keratinocyte innate immunity, which prevents the production of inflammatory mediators under homeostatic conditions and serves as a potent negative feedback regulator after TLR2 stimulation.
Journal of Investigative Dermatology | 2015
Dongqing Li; Xi Li; Aoxue Wang; Florian Meisgen; Andor Pivarcsi; Enikö Sonkoly; Mona Ståhle; Ning Xu Landén
Wound healing is a basic biological process restoring the integrity of the skin. The role of microRNAs during this process remains largely unexplored. By using an in vivo human skin wound healing model, we show here that the expression of miR-31 is gradually upregulated in wound edge keratinocytes in the inflammatory (1 day after injury) through the proliferative phase (7 days after injury) in comparison with intact skin. In human primary keratinocytes, overexpression of miR-31 promoted cell proliferation and migration, whereas inhibition of miR-31 had the opposite effects. Moreover, we identified epithelial membrane protein 1 (EMP-1) as a direct target of miR-31 in keratinocytes. The expression of EMP-1 in the skin was negatively correlated with the level of miR-31 during wound healing. Silencing of EMP-1 mimicked the effects of overexpression of miR-31 on keratinocyte proliferation and migration, indicating that EMP-1 is a critical target mediating the functions of miR-31 in keratinocytes. Finally, we demonstrated that transforming growth factor-β2, which is highly expressed in skin wounds, upregulated miR-31 expression in keratinocytes. Collectively, we identify miR-31 as a key regulator for promoting keratinocyte proliferation and migration during wound healing.
Journal of Clinical Investigation | 2015
Dongqing Li; Ao-Xue Wang; Xi Liu; Florian Meisgen; Jacob Grünler; Ileana Ruxandra Botusan; Sampath Narayanan; Erdem Erikci; Xi Li; Lennart Blomqvist; Lei Du; Andor Pivarcsi; Enikö Sonkoly; Kamal Chowdhury; Sergiu-Bogdan Catrina; Mona Ståhle; Ning Xu Landén
Wound healing is a complex process that is characterized by an initial inflammatory phase followed by a proliferative phase. This transition is a critical regulatory point; however, the factors that mediate this process are not fully understood. Here, we evaluated microRNAs (miRs) in skin wound healing and characterized the dynamic change of the miRNome in human skin wounds. miR-132 was highly upregulated during the inflammatory phase of wound repair, predominantly expressed in epidermal keratinocytes, and peaked in the subsequent proliferative phase. TGF-β1 and TGF-β2 induced miR-132 expression in keratinocytes, and transcriptome analysis of these cells revealed that miR-132 regulates a large number of immune response- and cell cycle-related genes. In keratinocytes, miR-132 decreased the production of chemokines and the capability to attract leukocytes by suppressing the NF-κB pathway. Conversely, miR-132 increased activity of the STAT3 and ERK pathways, thereby promoting keratinocyte growth. Silencing of the miR-132 target heparin-binding EGF-like growth factor (HB-EGF) phenocopied miR-132 overexpression in keratinocytes. Using mouse and human ex vivo wound models, we found that miR-132 blockade delayed healing, which was accompanied by severe inflammation and deficient keratinocyte proliferation. Together, our results indicate that miR-132 is a critical regulator of skin wound healing that facilitates the transition from the inflammatory to the proliferative phase.
British Journal of Dermatology | 2013
Andor Pivarcsi; Florian Meisgen; Ning Xu; Mona Ståhle; Enikö Sonkoly
MicroRNAs (miRNAs) are endogenous, nonprotein‐coding, regulatory RNAs with important roles in health and disease. miRNAs are present in the circulation in a stable form and their levels are altered in diseases.
PLOS ONE | 2014
Ao-Xue Wang; Ning Xu Landén; Florian Meisgen; Warangkana Lohcharoenkal; Mona Ståhle; Enikö Sonkoly; Andor Pivarcsi
Cutaneous squamous cell carcinoma (cSCC) is a malignancy of epidermal keratinocytes that is responsible for approximately 20% of skin cancer-related death yearly. We have previously compared the microRNA (miRNA) expression profile of cSCC to healthy skin and found the dysregulation of miRNAs in human cSCC. In this study we show that miR-31 is overexpressed in cSCC (n = 68) compared to healthy skin (n = 34) and precancerous skin lesions (actinic keratosis, n = 12). LNA in situ hybridization revealed that miR-31 was specifically up-regulated in tumor cells. Mechanistic studies of inhibition of endogenous miR-31 in human metastatic cSCC cells revealed suppressed migration, invasion and colony forming ability, whereas overexpression of miR-31 induced these phenotypes. These results indicate that miR-31 regulates cancer-associated phenotypes of cSCC and identify miR-31 as a potential target for cSCC treatment.