Eoin Allen
University College Cork
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eoin Allen.
Waste Management | 2013
Eoin Allen; James D. Browne; S. Hynes; Jerry D. Murphy
Ulva lactuca (commonly known as sea letuce) is a green sea weed which dominates Green Tides or algae blooms. Green Tides are caused by excess nitrogen from agriculture and sewage outfalls resulting in eutrophication in shallow estuaries. Samples of U. lactuca were taken from the Argideen estuary in West Cork on two consecutive years. In year 1 a combination of three different processes/pretreatments were carried out on the Ulva. These include washing, wilting and drying. Biomethane potential (BMP) assays were carried out on the samples. Fresh Ulva has a biomethane yield of 183LCH4/kgVS. For dried, washed and macerated Ulva a BMP of 250LCH4/kgVS was achieved. The resource from the estuary in West Cork was shown to be sufficient to provide fuel to 264 cars on a year round basis. Mono-digestion of Ulva may be problematic; the C:N ratio is low and the sulphur content is high. In year 2 co-digestion trials with dairy slurry were carried out. These indicate a potential increase in biomethane output by 17% as compared to mono-digestion of Ulva and slurry.
Bioresource Technology | 2014
Eoin Allen; David M. Wall; Christiane Herrmann; Jerry D. Murphy
Ulva lactuca, a green seaweed, accumulates on beaches and shallow estuaries subject to eutrophication. As a residue, and a macro-algae, it is a source of sustainable third generation biofuel. Production of biomethane from mono-digestion of U. lactuca, however is problematic due to high levels of sulphur and low ratios of carbon to nitrogen. Fresh and dried U. lactuca were continuously co-digested with dairy slurry at ratios of 25%, 50% and 75% (by volatile solid content) in 6 number 5L reactors for 9months. The reactors digesting a mix with 75% U. lactuca struggled to reach stable conditions. Volatile fatty acid levels of 14,000mgl(-1) were experienced. The levels of ammonia increased with percentage U. lactuca in the mix. Optimum conditions were observed with a mix of 25% fresh U. lactuca and 75% slurry. A yield of 170LCH4kg(-1)VS was achieved at an organic loading rate of 2.5kgVSm(-3)d(-1).
Waste Management | 2013
James D. Browne; Eoin Allen; Jerry D. Murphy
This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB.
Bioresource Technology | 2014
David M. Wall; Eoin Allen; Barbara Straccialini; P. O’Kiely; Jerry D. Murphy
This study investigated the feasibility of mono-digesting grass silage, dairy slurry and the co-digestion of the two substrates at a range of concentrations with a specific focus on digester performance while increasing organic loading rate (OLR). The results show that the higher the proportion of grass silage in the substrate mix the higher the specific methane yield (SMY) achieved. Optimum conditions were assessed for 100% grass silage at an OLR of 3.5 kg VS m(-3) d(-1) generating a SMY of 398 L CH4 kg(-1) VS equating to a biomethane efficiency of 1.0. For co-digestion of grass silage with 20% dairy slurry the optimum condition was noted at an OLR of 4.0 kg VS m(-3) d(-1) generating a SMY of 349L CH4 kg(-1) VS and a biomethane efficiency of 1.01. Hydraulic retention times of less than 20 days proved to be a limiting factor in the operation of farm digesters.
Bioresource Technology | 2014
David M. Wall; Eoin Allen; Barbara Straccialini; P. O’Kiely; Jerry D. Murphy
This study investigated the effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors were run for 65weeks with a further 5weeks taken for trace element supplementation for the mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01) than mono-digestion (0.90) at an OLR of 4.0kgVSm(-3)d(-1) prior to addition of trace elements. Addition of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to 404LCH4kg(-1)VS and attained a biomethane efficiency of 1.01.
Environmental Technology | 2013
James D. Browne; Eoin Allen; Jerry D. Murphy
This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS−1 for pig slurry to as high as 787 L CH4 kg VS−1 for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 t−1) followed by cheese waste (38 t−1) and abattoir waste (36 t−1). It was suggested that waste water sludge (16 t−1) and pig slurry (4 t−1) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.
Environmental Technology | 2013
Eoin Allen; James D. Browne; Jerry D. Murphy
This paper examines three substrates for anaerobic co-digestion: abattoir waste; cheese waste and food waste. These substrates were assessed in detail for suitability for biomethane production. Biomethane potential (BMP) assays were carried out in mono and co-digestion for the three substrates and two mixes: T1 (40% abattoir waste; 50% cheese waste and 10% food waste on a wet weight basis) and T2 (30% abattoir waste; 40% cheese waste and 30% food waste). The C:N ratio of both mixes was below optimum. Low levels suggest that the production of free ammonia (NH3) in semi-continuous digestion was of primary concern. Both mixes were digested in a semi-continuous process for 25 weeks. The recommended operating condition for T1 was a loading rate of 3 kg VS mn−3 day−1 at a retention time of 23 days. The biomethane yield was 305 L CH4 kg−1 volatile solids (VS) which was 87% of the BMP value and equivalent to 61% biodegradability. For T2 (with the higher C:N ratio) a higher loading rate of 4 kg VS mn−3 day−1 at a lower retention time of 15 days was recommended. The biomethane yield was 439 L CH4 kg−1 VS (99% of the BMP value and 84% biodegradibility). At these conditions, levels of total ammonical nitrogen (TAN) were 4109 and 4831 mg L−1 for T1 and T2, respectively. These values are on the large side according to the literature. The temperature was reduced to 35°C to minimize toxicity associated with TAN. Ratios of volatile acids to bicarbonate were typically in the range of 0.2–0.3 suggesting stable operation.
PLOS ONE | 2015
Jamie A. FitzGerald; Eoin Allen; David M. Wall; Stephen A. Jackson; Jerry D. Murphy; Alan D. W. Dobson
Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation.
Bioresource Technology | 2015
David M. Wall; Barbara Straccialini; Eoin Allen; P. Nolan; Christiane Herrmann; P. O’Kiely; Jerry D. Murphy
This work examines the digestion of advanced growth stage grass silage. Two variables were investigated: particle size (greater than 3 cm and less than 1cm) and rumen fluid addition. Batch studies indicated particle size and rumen fluid addition had little effect on specific methane yields (SMYs). In continuous digestion of 3 cm silage the SMY was 342 and 343 L CH4 kg(-1)VS, respectively, with and without rumen fluid addition. However, digester operation was significantly affected through silage floating on the liquor surface and its entanglement in the mixing system. Digestion of 1cm silage with no rumen fluid addition struggled; volatile fatty acid concentrations rose and SMYs dropped. The best case was 1cm silage with rumen fluid addition, offering higher SMYs of 371 L CH4 kg(-1)VS and stable operation throughout. Thus, physical and biological treatments benefited continuous digestion of high fibre grass silage.
Applied Energy | 2014
James D. Browne; Eoin Allen; Jerry D. Murphy