Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerry D. Murphy is active.

Publication


Featured researches published by Jerry D. Murphy.


Bioresource Technology | 2011

Renewable fuels from algae: an answer to debatable land based fuels.

Anoop Singh; Poonam Singh Nee Nigam; Jerry D. Murphy

This article reviews the utilization of first and second-generation biofuels as the suitable alternatives to depleting fossil fuels. Then the concern has been presented over a debate on most serious problem arising from the production of these biofuels; which is the increase of food market prices because of the increased use of arable land for the cultivation of biomass used for the production of first and second-generation biofuels. The solution to this debate has been suggested with the use of non-arable land for the cultivation of algal biomass for the generation of third generation biofuels. The recent research and developments in the cultivation of algal biomass and their use for biofuel production have been discussed.


Bioresource Technology | 2010

Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives.

Anoop Singh; Deepak Pant; Nicholas E. Korres; Abdul-Sattar Nizami; Shiv Prasad; Jerry D. Murphy

Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production.


Bioresource Technology | 2011

Mechanism and challenges in commercialisation of algal biofuels.

Anoop Singh; Poonam Singh Nee Nigam; Jerry D. Murphy

Biofuels made from algal biomass are being considered as the most suitable alternative energy in current global and economical scenario. Microalgae are known to produce and accumulate lipids within their cell mass which is similar to those found in many vegetable oils. The efficient lipid producer algae cell mass has been reported to contain more than 30% of their cell weight as lipids. According to US DOE microalgae have the potential to produce 100 times more oil per acre land than any terrestrial plants. This article reviews up to date literature on the composition of algae, mechanism of oil droplets, triacylglycerol (TAG) production in algal biomass, research and development made in the cultivation of algal biomass, harvesting strategies, and recovery of lipids from algal mass. The economical challenges in the production of biofuels from algal biomass have been discussed in view of the future prospects in the commercialisation of algal fuels.


Environmental Science & Technology | 2009

Review of the integrated process for the production of grass biomethane.

Abdul-Sattar Nizami; Nicholas E. Korres; Jerry D. Murphy

Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.


Waste Management | 2013

The potential of algae blooms to produce renewable gaseous fuel

Eoin Allen; James D. Browne; S. Hynes; Jerry D. Murphy

Ulva lactuca (commonly known as sea letuce) is a green sea weed which dominates Green Tides or algae blooms. Green Tides are caused by excess nitrogen from agriculture and sewage outfalls resulting in eutrophication in shallow estuaries. Samples of U. lactuca were taken from the Argideen estuary in West Cork on two consecutive years. In year 1 a combination of three different processes/pretreatments were carried out on the Ulva. These include washing, wilting and drying. Biomethane potential (BMP) assays were carried out on the samples. Fresh Ulva has a biomethane yield of 183LCH4/kgVS. For dried, washed and macerated Ulva a BMP of 250LCH4/kgVS was achieved. The resource from the estuary in West Cork was shown to be sufficient to provide fuel to 264 cars on a year round basis. Mono-digestion of Ulva may be problematic; the C:N ratio is low and the sulphur content is high. In year 2 co-digestion trials with dairy slurry were carried out. These indicate a potential increase in biomethane output by 17% as compared to mono-digestion of Ulva and slurry.


Trends in Biotechnology | 2016

Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems

Ao Xia; Jerry D. Murphy

Biogas production via anaerobic digestion (AD) has rapidly developed in recent years. In addition to biogas, digestate is an important byproduct. Liquid digestate is the major fraction of digestate and may contain high levels of ammonia nitrogen. Traditional processing technologies (such as land application) require significant energy inputs and raise environmental risks (such as eutrophication). Alternatively, microalgae can efficiently remove the nutrients from digestate while producing high-value biomass that can be used for the production of biochemicals and biofuels. Both inorganic and organic carbon sources derived from biogas production can significantly improve microalgal production. Land requirement for microalgal cultivation is estimated as 3% of traditional direct land application of digestate.


Biotechnology Advances | 2016

Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

Ao Xia; Jun Cheng; Jerry D. Murphy

Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission.


Bioresource Technology | 2013

The potential for biomethane from grass and slurry to satisfy renewable energy targets.

David M. Wall; P. O’Kiely; Jerry D. Murphy

A biomethane potential (BMP) assessment of grass silage yielded 107 m(3)CH4 t(-1). Long term mono-digestion of grass silage can suffer due to a deficiency in essential nutrients; this may be overcome by co-digesting with slurry. Mono-digestion of slurry achieved a low yield of 16 m(3)CH4 t(-1). BMP assessments at a range of co-digestion ratios indicated methane yields were between 4% and 11% lower than the values calculated from mono-digestion. This paper suggests that co-digestion of the majority of slurry produced from dairy cows in Ireland with grass silage quantities equivalent to 1.1% of grassland on a 50:50 volatile solids basis would generate over 10% renewable energy supply in transport (RES-T). The industry proposed would equate to 170 digesters each treating 10,000 t a(-1) of grass silage and 40,000 t a(-1) of slurry from dairy cows.


Bioresource Technology | 2015

Ensiling of seaweed for a seaweed biofuel industry.

Christiane Herrmann; Jamie A. FitzGerald; Richard O’Shea; Ao Xia; P. O’Kiely; Jerry D. Murphy

Effective biogas production from seaweed necessitates harvest at times of peak quality of biomass and low-loss preservation for year-around supply. Ensiling of five seaweed species and storage up to 90days was investigated as a method to preserve the methane yield potential. Adequate acidification by natural lactic acid fermentation was difficult due to low rapidly fermentable carbohydrate contents, high buffering capacities and low initial numbers of lactic acid bacteria. Nevertheless, products of silage fermentation increased methane yields by up to 28% and compensated for volatile solid losses during ensiling. Preservation of the original methane yield potential was achieved for four of five seaweed species, provided that silage effluent is collected and utilised. 10-28% of the ensiled biomass was released as effluent with methane yields of 218-423LNkg(-1) VS. If further optimised, ensiling represents an effective method of preservation crucial for an efficient seaweed biofuel industry.


Bioresource Technology | 2016

Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae.

Ao Xia; Amita Jacob; Muhammad Rizwan Tabassum; Christiane Herrmann; Jerry D. Murphy

Algae may be fermented to produce hydrogen. However micro-algae (such as Arthrospira platensis) are rich in proteins and have a low carbon/nitrogen (C/N) ratio, which is not ideal for hydrogen fermentation. Co-fermentation with macro-algae (such as Laminaria digitata), which are rich in carbohydrates with a high (C/N) ratio, improves the performance of hydrogen production. Algal biomass, pre-treated with 2.5% dilute H2SO4 at 135°C for 15min, effected a total yield of carbohydrate monomers (CMs) of 0.268g/g volatile solids (VS). The CMs were dominating by glucose and mannitol and most (ca. 95%) were consumed by anaerobic fermentative micro-organisms during subsequent fermentation. An optimal specific hydrogen yield (SHY) of 85.0mL/g VS was obtained at an algal C/N ratio of 26.2 and an algal concentration of 20g VS/L. The overall energy conversion efficiency increased from 31.3% to 54.5% with decreasing algal concentration from 40 to 5 VS g/L.

Collaboration


Dive into the Jerry D. Murphy's collaboration.

Top Co-Authors

Avatar

Ao Xia

Chongqing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eoin Allen

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice Smyth

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anoop Singh

Banaras Hindu University

View shared research outputs
Researchain Logo
Decentralizing Knowledge