Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Er-Tuan Chuang is active.

Publication


Featured researches published by Er-Tuan Chuang.


Accounts of Chemical Research | 2012

pH-Responsive Nanoparticles Shelled with Chitosan for Oral Delivery of Insulin: From Mechanism to Therapeutic Applications

Hsing-Wen Sung; Kiran Sonaje; Zi-Xian Liao; Li Wen Hsu; Er-Tuan Chuang

Despite advances in drug-delivery technologies, successful oral administration of protein drugs remains an elusive challenge. When protein drugs are administered orally, they can rapidly denature or degrade before they reach their targets. Such drugs also may not absorb adequately within the small intestine. As a protein drug for treating diabetes, insulin is conventionally administered via subcutaneous (SC) injection, yet often fails to achieve the glucose homeostasis observed in nondiabetic subjects. Some of this difference may relate to insulin transport: normally, endogenously secreted insulin moves to the liver via portal circulation. When administered subcutaneously, insulin moves through the body via peripheral circulation, which can produce a peripheral hyperinsulinemia. In addition, because SC treatment requires multiple daily injections of insulin, patients often do not fully comply with treatment. Oral administration of exogenous insulin would deliver the drug directly into the liver through portal circulation, mimicking the physiological fate of endogenously secreted insulin. This characteristic may offer the needed hepatic activation, while avoiding hyperinsulinemia and its associated long-term complications. This Account demonstrates the feasibility of using chitosan nanoparticles for oral insulin delivery. Nanoparticle (NP) delivery systems may provide an alternative means of orally administering protein drugs. In addition to protecting the drugs against a harmful gastric environment, the encapsulation of protein drugs in particulate carriers can avert enzymatic degradation, while controlling the drug release and enhancing their absorption in the small intestine. Our recent study described a pH-responsive NP system composed of chitosan (CS) and poly(γ-glutamic acid) for oral delivery of insulin. As a nontoxic, soft-tissue compatible, cationic polysaccharide, CS also adheres to the mucosal surface and transiently opens the tight junctions (TJs) between contiguous epithelial cells. Therefore, drugs made with CS NPs would have delivery advantages over traditional tablet or powder formulations. This Account focuses on the premise that these CS NPs can adhere to and infiltrate the mucus layer in the small intestine. Subsequently, the infiltrated CS NPs transiently open the TJs between epithelial cells. Because they are pH-sensitive, the nanoparticles become less stable and disintegrate, releasing the loaded insulin. The insulin then permeates through the opened paracellular pathway and moves into the systemic circulation.


Molecular Pharmaceutics | 2012

Opening of Epithelial Tight Junctions and Enhancement of Paracellular Permeation by Chitosan: Microscopic, Ultrastructural, and Computed-Tomographic Observations

Kiran Sonaje; Er-Tuan Chuang; Kun-Ju Lin; Tzu Chen Yen; Fang Yi Su; Michael T. Tseng; Hsing-Wen Sung

This study investigates the effects of chitosan (CS) on the opening of epithelial tight junctions (TJs) and paracellular transport at microscopic, ultrastructural, and computed-tomographic levels in Caco-2 cell monolayers and animal models. Using immunofluorescence staining, CS treatment was observed to be associated with the translocation of JAM-1 (a trans-membrane TJ protein), resulting in the disruption of TJs; the removal of CS was accompanied by the recovery of JAM-1. Ultrastructural observations by TEM reveal that CS treatment slightly opened the apical intercellular space, allowing lanthanum (an electron-dense tracer) to stain the intercellular surface immediately beneath the TJs, suggesting the opening of TJs. Following the removal of CS, the TJs were completely recovered. Similar microscopic and ultrastructural findings were obtained in animal studies. CS nanoparticles were prepared as an insulin carrier. The in vivo fluorescence-microscopic results demonstrate that insulin could be absorbed into the systemic circulation, while most CS was retained in the microvilli scaffolds. These observations were verified in a biodistribution study following the oral administration of isotope-labeled nanoparticles by single-photon emission computed tomography. Above results reveal that CS is a safe permeation enhancer and is an effective carrier for oral protein delivery.


Biomaterials | 2012

Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery

Fang Yi Su; Kun-Ju Lin; Kiran Sonaje; Shiaw-Pyng Wey; Tzu Chen Yen; Yi Cheng Ho; Nilendu Panda; Er-Tuan Chuang; Barnali Maiti; Hsing-Wen Sung

Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.


Biomaterials | 2011

Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins.

Kiran Sonaje; Kun-Ju Lin; Michael T. Tseng; Shiaw-Pyng Wey; Fang Yi Su; Er-Tuan Chuang; Chia-Wei Hsu; Chiung Tong Chen; Hsing-Wen Sung

Recently, we reported a pH-responsive nanoparticle (NP) system shelled with chitosan (CS), which could effectively increase the oral absorption of insulin and produce a hypoglycemic effect, presumably due to the CS-mediated tight junction (TJ) opening. It has been often questioned whether CS can also enhance the absorption of endotoxins present in the small intestine. To address this concern, we studied the effect of CS NPs on the absorption of lipopolysaccharide (LPS), the most commonly found toxin in the gastrointestinal tract. To follow their biodistribution by the single-photon emission computed tomography/computed tomography, LPS and insulin were labeled with (99m)Tc-pertechnetate ((99m)Tc-LPS) and (123)iodine ((123)I-insulin), respectively. The (99m)Tc-LPS was ingested 1 h prior to the administration of the (123)I-insulin-loaded NPs to mimic the physiological conditions. The confocal and TEM micrographs show that the orally administered CS NPs were able to adhere and infiltrate through the mucus layer, approach the epithelial cells and mediate to open their TJs. The radioactivity associated with LPS was mainly restricted to the gastrointestinal tract, whereas (123)I-insulin started to appear in the urinary bladder at 3 h post administration. This observation indicates that the insulin-loaded in CS NPs can traverse across the intestinal epithelium and enter the systemic circulation, whereas LPS was unable to do so, probably because of the charge repulsion between the anionic LPS in the form of micelles and the negatively charged mucus layer. Our in vivo toxicity study further confirms that the enhancement of paracellular permeation by CS NPs did not promote the absorption of LPS. These results suggest that CS NPs can be used as a safe carrier for oral delivery of protein drugs.


Biomaterials | 2011

The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo

Ho Ngoc Nguyen; Shiaw-Pyng Wey; Jyuhn Huarng Juang; Kiran Sonaje; Yi Cheng Ho; Er-Tuan Chuang; Chia-Wei Hsu; Tzu Chen Yen; Kun-Ju Lin; Hsing-Wen Sung

Exendin-4 is a potent insulinotropic agent in diabetes patients; however, its therapeutic utility is limited due to the frequent injections required. In this study, an orally available exendin-4 formulation, using an enteric-coated capsule containing pH-responsive NPs, was developed. Following oral administration of (123)I-labeled-exendin-4 loaded NPs in rats, the biodistribution of the administered drug was investigated using a dual isotope dynamic SPECT/CT scanner. The results showed that the radioactivity of (123)I-exendin-4 propagated from the esophagus, stomach, and small intestine and then was absorbed into the systemic circulation; with time progressing, (123)I-exendin-4 was metabolized and excreted into the urinary bladder. In the in vivo dissolution study, it was found that the enteric-coated capsule remained intact while in the stomach; the capsule was completely dissolved in the proximal segment of the small intestine and the loaded contents were then released. Oral administration of the capsule containing exendin-4 loaded NPs showed a maximum plasma concentration at 5 h after treatment; the bioavailability, relative to its subcutaneous counterpart, was found to be 14.0 ± 1.8%. The absorbed exendin-4 could then stimulate the insulin secretion and provide a prolonged glucose-lowering effect. The aforementioned results suggest that the orally available exendin-4 formulation developed warrants further exploration as a potential therapy for diabetic patients.


ACS Nano | 2014

Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications.

Hsiao Lan Pu; Wei Lun Chiang; Barnali Maiti; Zi-Xian Liao; Yi Cheng Ho; Min Suk Shim; Er-Tuan Chuang; Younan Xia; Hsing-Wen Sung

Oxidative stress and reduced pH are involved in many inflammatory diseases. This study describes a nanoparticle-based system that is responsive to both oxidative stress and reduced pH in an inflammatory environment to effectively release its encapsulated curcumin, an immune-modulatory agent with potent anti-inflammatory and antioxidant capabilities. Because of the presence of Förster resonance energy transfer between curcumin and the carrier, this system also allowed us to monitor the intracellular release behavior. The curcumin released upon triggering could efficiently reduce the excess oxidants produced by the lipopolysaccharide (LPS)-stimulated macrophages. The feasibility of using the curcumin-loaded nanoparticles for anti-inflammatory applications was further validated in a mouse model with ankle inflammation induced by LPS. The results of these studies demonstrate that the proposed nanoparticle system is promising for treating oxidative stress-related diseases.


Biomaterials | 2013

Effects of pH on molecular mechanisms of chitosan-integrin interactions and resulting tight-junction disruptions.

Li Wen Hsu; Yi Cheng Ho; Er-Tuan Chuang; Chiung Tong Chen; Jyuhn Huarng Juang; Fang Yi Su; Shiaw Min Hwang; Hsing-Wen Sung

Chitosan (CS) is a potential paracellular permeation enhancer for trans-epithelial drug delivery; however, its ability to enhance epithelial permeability in a pH-dependent manner remains unclear. This study was designed to explore the underlying molecular mechanisms with regard to the effect of CS on tight junction (TJ) disruption at different pH environments in Caco-2 cell monolayers. The experimental results revealed that the direct interaction between CS and integrin α(V)β(3) on cell surfaces has a crucial role in CS-induced TJ opening, an indication of receptor activation. The mechanism of action appeared to be the electrostatic interaction between the positively-charged CS and the negatively-charged integrin α(V)β(3). This electrostatic interaction led to the conformation change of integrin α(V)β(3) and its clustering along the cell border, F-actin reorganization, and CLDN4 down-regulation, eventually resulting in the disruption of TJs and an increase in paracellular permeability. The above observations were all in a pH-dependent manner. As pH increased, CS became less positively charged, thereby losing its capability to interact with integrin α(V)β(3) and failing to induce the TJ opening. These consequences might help to better understand the molecular mechanism of TJ opening mediated by CS, thereby facilitating the use of CS for trans-epithelial drug delivery.


Journal of Controlled Release | 2015

An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance

Zi-Xian Liao; Er-Tuan Chuang; Chia Chen Lin; Yi Cheng Ho; Kun-Ju Lin; Po-Yuan Cheng; Ko Jie Chen; Hao Ji Wei; Hsing-Wen Sung

Recent research in chemotherapy has prioritized overcoming the multidrug resistance (MDR) of cancer cells. In this work, liposomes that contain doxorubicin (DOX) and ammonium bicarbonate (ABC, a bubble-generating agent) are prepared and functionalized with an antinucleolin aptamer (AS1411 liposomes) to target DOX-resistant breast cancer cells (MCF-7/ADR), which overexpress nucleolin receptors. Free DOX and liposomes without functionalization with AS1411 (plain liposomes) were used as controls. The results of molecular dynamic simulations suggest that AS1411 functionalization may promote the affinity and specific binding of liposomes to the nucleolin receptors, enhancing their subsequent uptake by tumor cells, whereas plain liposomes enter cells with difficulty. Upon mild heating, the decomposition of ABC that is encapsulated in the liposomes enables the immediate activation of generation of CO2 bubbles, creating permeable defects in their lipid bilayers, and ultimately facilitating the swift intracellular release of DOX. In vivo studies in nude mice that bear tumors demonstrate that the active targeting of AS1411 liposomes can substantially increase the accumulation of DOX in the tumor tissues relative to free DOX or passively targeted plain liposomes, inhibiting tumor growth and reducing systemic side effects, including cardiotoxicity. The above findings indicate that liposomes that are functionalized with AS1411 represent an attractive therapeutic alternative for overcoming the MDR effect, and support a potentially effective strategy for cancer therapy.


Acta Biomaterialia | 2013

Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers

Shu Huei Yu; Deh Wei Tang; Hao Ying Hsieh; Wen Shin Wu; Bo Xian Lin; Er-Tuan Chuang; Hsing-Wen Sung; Fwu Long Mi

Fucoidan has the ability to inhibit angiogenesis by human umbilical vein endothelial cells (HUVECs). However, a major clinical limitation is its poor oral availability because fucoidan is a hydrophilic macromolecule. In this study, an oversulfation reaction of fucoidan has been performed to enhance its anti-angiogenic activities. The synthesized, oversulfated fucoidan (OFD) was characterized by Fourier transform infrared spectroscopy. The oversulfate content of OFD was estimated to be 41.7% by using a BaCl2 gelatin method. Nanoparticles (NPs) composed of chitosan (CS) and OFD were prepared by a polycation-polyanion complex method. The mean particle sizes of prepared CS/OFD NPs were in the range of 172-265nm with a negative or positive surface charge, depending on the relative concentrations of CS to OFD used. The self-assembled NPs with pH-sensitive characteristics could be used as a pH-switched nanocarrier for oral delivery of the antiangiogenic macromolecule, OFD, in response to simulated gastrointestinal (GI) tract media. Evaluation of test NPs in enhancing the intestinal paracellular transport of OFD suggested that the NPs with a positive surface charge could transiently open the tight junctions between Caco-2 cells and thus increase the paracellular permeability. Tight-junction opening and restoration were examined by monitoring the redistribution of ZO-1 tight-junction proteins using confocal laser scanning microscopy (CLSM). The transported OFD significantly inhibits the tube formation of HUVECs via competitive binding of OFD and basic fibroblast growth factor (bFGF) to bFGF receptors (bFGFRs).


Journal of Controlled Release | 2013

Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery.

Er-Tuan Chuang; Kun-Ju Lin; Fang Yi Su; Hsin-Lung Chen; Barnali Maiti; Yi Cheng Ho; Tzu Chen Yen; Nilendu Panda; Hsing-Wen Sung

Calcium (Ca(2+)) has a crucial role in maintaining the intestinal protease activity and in forming the apical junctional complex (AJC) that preserves epithelial barrier function. Ethylene glycol tetraacetic acid (EGTA) is a Ca(2+)-specific chelating agent. To maintain the concentration of this chelator in areas where enzyme inhibition and paracellular permeation enhancement are needed, this study synthesized a poly(γ-glutamic acid)-EGTA conjugate (γPGA-EGTA) to form nanoparticles (NPs) with chitosan (CS) for oral insulin delivery. The results of our molecular dynamic (MD) simulations indicate that Ca(2+) ions could be specifically chelated to the nitrogen atoms, ether oxygen atoms, and carboxylate oxygen atoms in [Ca(EGTA)](2-) anions. By chelating Ca(2+), γPGA-EGTA conferred a significant insulin protection effect against proteases in intestinal tracts isolated from rats. Additionally, calcium depletion by γPGA-EGTA could stimulate the endocytosis of AJC components in Caco-2 cell monolayers, which led to a reversible opening of AJCs and thus increased their paracellular permeability. Single-photon emission computed tomography images performed in the biodistribution study clearly show the (123)I-insulin orally delivered by CS/γPGA-EGTA NPs in the heart, aorta, renal cortex, renal pelvis and liver, which ultimately produced a significant and prolonged hypoglycemic effect in diabetic rats. The above results confirm that this γPGA-EGTA conjugate is a promising candidate for oral insulin delivery.

Collaboration


Dive into the Er-Tuan Chuang's collaboration.

Top Co-Authors

Avatar

Hsing-Wen Sung

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Kun-Ju Lin

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Fang Yi Su

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiung Tong Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiran Sonaje

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Barnali Maiti

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge