Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiran Sonaje is active.

Publication


Featured researches published by Kiran Sonaje.


Biomaterials | 2011

A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery.

Mei Chin Chen; Kiran Sonaje; Ko Jie Chen; Hsing-Wen Sung

Success in the oral delivery of therapeutic insulin can significantly improve the quality of life of diabetic patients who must routinely receive injections of this drug. However, oral absorption of insulin is limited by various physiological barriers and remains a major scientific challenge. Various technological solutions have been developed to increase the oral bioavailability of insulin. Having received considerable attention, nano-sized polymeric particles are highly promising for oral insulin delivery. This review article describes the gastrointestinal barriers to oral insulin delivery, including chemical, enzymatic and absorption barriers. The potential transport mechanisms of insulin delivered by nanoparticles across the intestinal epithelium are also discussed. Finally, recent advances in using polymeric nanoparticles for oral insulin delivery and their effects on insulin transport are reviewed, along with their future.


Biomaterials | 2009

In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery

Kiran Sonaje; Yu-Hsin Lin; Jyuhn-Huarng Juang; Shiaw-Pyng Wey; Chiung-Tong Chen; Hsing-Wen Sung

A variety of approaches have been studied in the past to overcome the problems encountered with the oral delivery of insulin, but with little success. In this study, self-assembled nanoparticles (NPs) with a pH-sensitive characteristic were prepared by mixing the anionic poly-gamma-glutamic acid solution with the cationic chitosan solution in the presence of MgSO(4) and sodium tripolyphosphate. The in vitro results found that the transport of insulin across Caco-2 cell monolayers by NPs appeared to be pH-dependent; with increasing pH, the amount of insulin transported decreased significantly. An in vivo toxicity study was performed to establish the safety of the prepared NPs after oral administration. Additionally, the impact of orally administered NPs on the pharmacodynamics (PD) and pharmacokinetics (PK) of insulin was evaluated in a diabetic rat model. The in vivo results indicated that the prepared NPs could effectively adhere on the mucosal surface and their constituted components were able to infiltrate into the mucosal cell membrane. The toxicity study indicated that the NPs were well tolerated even at a dose 18 times higher than that used in the PD/PK study. Oral administration of insulin-loaded NPs demonstrated a significant hypoglycemic action for at least 10h in diabetic rats and the corresponding relative bioavailability of insulin was found to be 15.1+/-0.9%. These findings suggest that the NPs prepared in the study are a promising vehicle for oral delivery of insulin.


Biomaterials | 2010

Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery

Kiran Sonaje; Yi-Jia Chen; Hsin-Lung Chen; Shiaw-Pyng Wey; Jyuhn-Huarng Juang; Ho-Ngoc Nguyen; Chia-Wei Hsu; Kun-Ju Lin; Hsing-Wen Sung

A pH-sensitive nanoparticle (NP) system composed of chitosan and poly(gamma-glutamic acid) was prepared for the oral delivery of insulin. The biodistribution study in a rat model showed that some of the orally administered NPs were retained in the stomach for a long duration, which might lead to the disintegration of NPs and degradation of insulin. To overcome these problems, we freeze-dried NPs and filled them in an enteric-coated capsule. The small angle X-ray scattering (SAXS) profiles indicated that the freeze-drying process did not significantly disrupt the internal structure of NPs; additionally, their pH-sensitivity was preserved and the insulin release was pH-dependent. The results obtained in the native PAGE analysis indicated that the released insulin molecules were neither fragmented nor aggregated. Upon oral administration, the enteric-coated capsule remained intact in the acidic environment of the stomach, but dissolved rapidly in the proximal segment of the small intestine. Consequently, all the NPs loaded in the capsule were brought into the small intestine, thus enhancing the intestinal absorption of insulin and providing a prolonged reduction in blood glucose levels. The relative bioavailability of insulin was found to be approximately 20%. These results suggest that the formulation developed in the study might be employed as a potential approach for the oral delivery of insulin.


Advanced Drug Delivery Reviews | 2013

Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules

Mei Chin Chen; Fwu Long Mi; Zi-Xian Liao; Chun Wen Hsiao; Kiran Sonaje; Min Fan Chung; Li Wen Hsu; Hsing-Wen Sung

Chitosan (CS), a cationic polysaccharide, is widely regarded as a safe and efficient intestinal absorption enhancer of therapeutic macromolecules, owing to its inherent mucoadhesive feature and ability to modulate the integrity of epithelial tight junctions reversibly. By using CS-based nanoparticles, many studies have attempted to protect the loaded macromolecules against acidic denaturation and enzymatic degradation, prolong their intestinal residence time, and increase their absorption by the intestinal epithelium. Derivatives of CS such as quaternized CS, thiolated CS and carboxylated CS have also been examined to further enhance its effectiveness in oral absorption of macromolecular drugs. This review article describes the synthesis of these CS derivatives and their characteristics, as well as their potential transport mechanisms of macromolecular therapeutics across the intestinal biological membrane. Recent advances in using CS and its derivatives as carriers for oral delivery of hydrophilic macromolecules and their effects on drug transport are also reviewed.


Journal of Controlled Release | 2008

Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs

Yu-Hsin Lin; Kiran Sonaje; Kurt M. Lin; Jyuhn Huarng Juang; Fwu Long Mi; Han Wen Yang; Hsing-Wen Sung

pH-Responsive nanoparticles composed of chitosan (CS) and poly-gamma-glutamic acid (gamma-PGA) blended with tripolyphosphate (TPP) and MgSO(4) (multi-ion-crosslinked NPs) were prepared and characterized to determine their effectiveness in the oral delivery of insulin. Their counterparts without TPP and MgSO(4) (NPs) were used as a control. FT-IR and XRD results indicated that the spontaneous interaction between CS, insulin, gamma-PGA, MgSO(4) and TPP can form an ionically crosslinked network-structure, leading to the formation of nanoparticles. Multi-ion-crosslinked NPs were more compact than NPs, while their zeta potential values were comparable. During storage, multi-ion-crosslinked NPs suspended in deionized water were stable for at least 10 weeks. Multi-ion-crosslinked NPs had a superior stability over a broader pH range than NPs. In the in vitro release study, NPs failed to provide an adequate retention of loaded insulin in dissolution media compared to multi-ion-crosslinked NPs. Transepithelial-electrical-resistance and transport experiments demonstrated that multi-ion-crosslinked NPs significantly more effectively transported insulin than NPs; confocal visualization further validated the enhanced permeation of insulin via the paracellular pathway. The aforementioned results suggest that multi-ion-crosslinked NPs are a promising carrier for improved transmucosal delivery of insulin in the small intestine.


Biomaterials | 2010

Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-Responsive nanoparticles vs. subcutaneous injection

Kiran Sonaje; Kun-Ju Lin; Shiaw-Pyng Wey; Che-Kuan Lin; Tzyy-Harn Yeh; Ho-Ngoc Nguyen; Chia-Wei Hsu; Tzu-Chen Yen; Jyuhn-Huarng Juang; Hsing-Wen Sung

In this study, we report the biodistribution of aspart-insulin, a rapid-acting insulin analogue, following oral or subcutaneous (SC) administration to rats using the single-photon emission computed tomography (SPECT)/computed tomography (CT). Oral delivery of aspart-insulin was achieved using a pH-responsive nanoparticle (NP) system composed of chitosan (CS) and poly(gamma-glutamic acid). The results obtained in the SPECT/CT study indicate that the orally administered aspart-insulin was absorbed into the systemic circulation, while the drug carrier (CS) was mainly retained in the gastrointestinal tract.Via the SC route, the peak aspart-insulin concentration in the peripheral tissue/plasma was observed at 20 min after injection. Within 3 h, half of the initial dose (ID) of aspart-insulin was degraded and excreted into the urinary bladder. In contrast, via oral delivery, there was constantly circulating aspart-insulin in the peripheral tissue/plasma during the course of the study, while 20% of the ID of aspart-insulin was metabolized and excreted into the urinary bladder. In the pharmacodynamic (PD) and pharmacokinetic (PK) evaluation in a diabetic rat model, the orally administered aspart-insulin loaded NPs produced a slower hypoglycemic response for a prolonged period of time, whereas the SC injection of aspart-insulin produced a more pronounced hypoglycemic effect for a relatively shorter duration. Finally, comparison of the PD/PK profiles of the orally administered aspart-insulin with those of the SC injection of NPH-insulin, an intermediate-acting insulin preparation, suggests the suitability of our NP system to be used as a non-invasive alternative for the basal insulin therapy.


Bioconjugate Chemistry | 2008

Oral Delivery of Peptide Drugs Using Nanoparticles Self-Assembled by Poly(γ-glutamic acid) and a Chitosan Derivative Functionalized by Trimethylation

Fwu Long Mi; Yong Yi Wu; Yu-Hsin Lin; Kiran Sonaje; Yi Cheng Ho; Chiung Tong Chen; Jyuhn Huarng Juang; Hsing-Wen Sung

In the study, chitosan (CS) was conjugated with trimethyl groups for the synthesis of N-trimethyl chitosan (TMC) polymers with different degrees of quaternization. Nanoparticles (NPs) self-assembled by the synthesized TMC and poly(gamma-glutamic acid) (gamma-PGA, TMC/gamma-PGA NPs) were prepared for oral delivery of insulin. The loading efficiency and loading content of insulin in TMC/gamma-PGA NPs were 73.8 +/- 2.9% and 23.5 +/- 2.1%, respectively. TMC/gamma-PGA NPs had superior stability in a broader pH range to CS/gamma-PGA NPs; the in vitro release profiles of insulin from both test NPs were significantly affected by their stability at distinct pH environments. At pH 7.0, CS/gamma-PGA NPs became disintegrated, resulting in a rapid release of insulin, which failed to provide an adequate retention of loaded insulin, while the cumulative amount of insulin released from TMC/gamma-PGA NPs was significantly reduced. At pH 7.4, TMC/gamma-PGA NPs were significantly swelled and a sustained release profile of insulin was observed. Confocal microscopy confirmed that TMC40/gamma-PGA NPs opened the tight junctions of Caco-2 cells to allow the transport of insulin along the paracellular pathway. Transepithelial-electrical-resistance measurements and transport studies implied that CS/gamma-PGA NPs can be effective as an insulin carrier only in a limited area of the intestinal lumen where the pH values are close to the p K a of CS. In contrast, TMC40/gamma-PGA NPs may be a suitable carrier for transmucosal delivery of insulin within the entire intestinal tract.


Accounts of Chemical Research | 2012

pH-Responsive Nanoparticles Shelled with Chitosan for Oral Delivery of Insulin: From Mechanism to Therapeutic Applications

Hsing-Wen Sung; Kiran Sonaje; Zi-Xian Liao; Li Wen Hsu; Er-Tuan Chuang

Despite advances in drug-delivery technologies, successful oral administration of protein drugs remains an elusive challenge. When protein drugs are administered orally, they can rapidly denature or degrade before they reach their targets. Such drugs also may not absorb adequately within the small intestine. As a protein drug for treating diabetes, insulin is conventionally administered via subcutaneous (SC) injection, yet often fails to achieve the glucose homeostasis observed in nondiabetic subjects. Some of this difference may relate to insulin transport: normally, endogenously secreted insulin moves to the liver via portal circulation. When administered subcutaneously, insulin moves through the body via peripheral circulation, which can produce a peripheral hyperinsulinemia. In addition, because SC treatment requires multiple daily injections of insulin, patients often do not fully comply with treatment. Oral administration of exogenous insulin would deliver the drug directly into the liver through portal circulation, mimicking the physiological fate of endogenously secreted insulin. This characteristic may offer the needed hepatic activation, while avoiding hyperinsulinemia and its associated long-term complications. This Account demonstrates the feasibility of using chitosan nanoparticles for oral insulin delivery. Nanoparticle (NP) delivery systems may provide an alternative means of orally administering protein drugs. In addition to protecting the drugs against a harmful gastric environment, the encapsulation of protein drugs in particulate carriers can avert enzymatic degradation, while controlling the drug release and enhancing their absorption in the small intestine. Our recent study described a pH-responsive NP system composed of chitosan (CS) and poly(γ-glutamic acid) for oral delivery of insulin. As a nontoxic, soft-tissue compatible, cationic polysaccharide, CS also adheres to the mucosal surface and transiently opens the tight junctions (TJs) between contiguous epithelial cells. Therefore, drugs made with CS NPs would have delivery advantages over traditional tablet or powder formulations. This Account focuses on the premise that these CS NPs can adhere to and infiltrate the mucus layer in the small intestine. Subsequently, the infiltrated CS NPs transiently open the TJs between epithelial cells. Because they are pH-sensitive, the nanoparticles become less stable and disintegrate, releasing the loaded insulin. The insulin then permeates through the opened paracellular pathway and moves into the systemic circulation.


Molecular Pharmaceutics | 2012

Opening of Epithelial Tight Junctions and Enhancement of Paracellular Permeation by Chitosan: Microscopic, Ultrastructural, and Computed-Tomographic Observations

Kiran Sonaje; Er-Tuan Chuang; Kun-Ju Lin; Tzu Chen Yen; Fang Yi Su; Michael T. Tseng; Hsing-Wen Sung

This study investigates the effects of chitosan (CS) on the opening of epithelial tight junctions (TJs) and paracellular transport at microscopic, ultrastructural, and computed-tomographic levels in Caco-2 cell monolayers and animal models. Using immunofluorescence staining, CS treatment was observed to be associated with the translocation of JAM-1 (a trans-membrane TJ protein), resulting in the disruption of TJs; the removal of CS was accompanied by the recovery of JAM-1. Ultrastructural observations by TEM reveal that CS treatment slightly opened the apical intercellular space, allowing lanthanum (an electron-dense tracer) to stain the intercellular surface immediately beneath the TJs, suggesting the opening of TJs. Following the removal of CS, the TJs were completely recovered. Similar microscopic and ultrastructural findings were obtained in animal studies. CS nanoparticles were prepared as an insulin carrier. The in vivo fluorescence-microscopic results demonstrate that insulin could be absorbed into the systemic circulation, while most CS was retained in the microvilli scaffolds. These observations were verified in a biodistribution study following the oral administration of isotope-labeled nanoparticles by single-photon emission computed tomography. Above results reveal that CS is a safe permeation enhancer and is an effective carrier for oral protein delivery.


Biomaterials | 2012

Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery

Fang Yi Su; Kun-Ju Lin; Kiran Sonaje; Shiaw-Pyng Wey; Tzu Chen Yen; Yi Cheng Ho; Nilendu Panda; Er-Tuan Chuang; Barnali Maiti; Hsing-Wen Sung

Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.

Collaboration


Dive into the Kiran Sonaje's collaboration.

Top Co-Authors

Avatar

Hsing-Wen Sung

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Kun-Ju Lin

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Er-Tuan Chuang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chia-Wei Hsu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Hsin Lin

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chiung Tong Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Fang Yi Su

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge