Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erdem Coskun is active.

Publication


Featured researches published by Erdem Coskun.


Free Radical Research | 2015

Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques

Miral Dizdaroglu; Erdem Coskun; Pawel Jaruga

Abstract Oxidatively induced damage caused by free radicals and other DNA-damaging agents generate a plethora of products in the DNA of living organisms. There is mounting evidence for the involvement of this type of damage in the etiology of numerous diseases including carcinogenesis. For a thorough understanding of the mechanisms, cellular repair, and biological consequences of DNA damage, accurate measurement of resulting products must be achieved. There are various analytical techniques, with their own advantages and drawbacks, which can be used for this purpose. Mass spectrometric techniques with isotope dilution, which include gas chromatography (GC) and liquid chromatography (LC), provide structural elucidation of products and ascertain accurate quantification, which are absolutely necessary for reliable measurement. Both gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), in single or tandem versions, have been used for the measurement of numerous DNA products such as sugar and base lesions, 8,5’-cyclopurine-2’-deoxynucleosides, base-base tandem lesions, and DNA-protein crosslinks, in vitro and in vivo. This article reviews these techniques and their applications in the measurement of oxidatively induced DNA damage and its repair.


PLOS ONE | 2015

Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts.

Natalie R. Gassman; Erdem Coskun; Julie K. Horton; Pawel Jaruga; Miral Dizdaroglu; Samuel H. Wilson

Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.


ACS Chemical Biology | 2015

SMALL MOLECULE INHIBITORS OF 8-OXOGUANINE DNA GLYCOSYLASE-1 (OGG1)

Nathan Donley; Pawel Jaruga; Erdem Coskun; Miral Dizdaroglu; Amanda K. McCullough; R. Stephen Lloyd

The DNA base excision repair (BER) pathway, which utilizes DNA glycosylases to initiate repair of specific DNA lesions, is the major pathway for the repair of DNA damage induced by oxidation, alkylation, and deamination. Early results from clinical trials suggest that inhibiting certain enzymes in the BER pathway can be a useful anticancer strategy when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. Despite this general validation of BER enzymes as drug targets, there are many enzymes that function in the BER pathway that have few, if any, specific inhibitors. There is a growing body of evidence that suggests inhibition of 8-oxoguanine DNA glycosylase-1 (OGG1) could be useful as a monotherapy or in combination therapy to treat certain types of cancer. To identify inhibitors of OGG1, a fluorescence-based screen was developed to analyze OGG1 activity in a high-throughput manner. From a primary screen of ∼50,000 molecules, 13 inhibitors were identified, 12 of which were hydrazides or acyl hydrazones. Five inhibitors with an IC50 value of less than 1 μM were chosen for further experimentation and verified using two additional biochemical assays. None of the five OGG1 inhibitors reduced DNA binding of OGG1 to a 7,8-dihydro-8-oxoguanine (8-oxo-Gua)-containing substrate, but all five inhibited Schiff base formation during OGG1-mediated catalysis. All of these inhibitors displayed a >100-fold selectivity for OGG1 relative to several other DNA glycosylases involved in repair of oxidatively damaged bases. These inhibitors represent the most potent and selective OGG1 inhibitors identified to date.


Environmental Health Perspectives | 2016

Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO3) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts.

Natalie R. Gassman; Erdem Coskun; Pawel Jaruga; Miral Dizdaroglu; Samuel H. Wilson

Background: Exposure to bisphenol A (BPA) has been reported to alter global gene expression, induce epigenetic modifications, and interfere with complex regulatory networks of cells. In addition to these reprogramming events, we have demonstrated that BPA exposure generates reactive oxygen species and promotes cellular survival when co-exposed with the oxidizing agent potassium bromate (KBrO3). Objectives: We determined the cellular microenvironment changes induced by co-exposure of BPA and KBrO3 versus either agent alone. Methods: Ku70-deficient cells were exposed to 150 μM BPA, 20 mM KBrO3, or co-exposed to both agents. Four and 24 hr post-damage initiation by KBrO3, with BPA-only samples timed to coincide with these designated time points, we performed whole-genome microarray analysis and evaluated chromatin structure, DNA lesion load, glutathione content, and intracellular pH. Results: We found that 4 hr post-damage initiation, BPA exposure and co-exposure transiently condensed chromatin compared with untreated and KBrO3-only treated cells; the transcription of DNA repair proteins was also reduced. At this time point, BPA exposure and co-exposure also reduced the change in intracellular pH observed after treatment with KBrO3 alone. Twenty-four hours post-damage initiation, BPA-exposed cells showed less condensed chromatin than cells treated with KBrO3 alone; the intracellular pH of the co-exposed cells was significantly reduced compared with untreated and KBrO3-treated cells; and significant up-regulation of DNA repair proteins was observed after co-exposure. Conclusion: These results support the induction of an adaptive response by BPA co-exposure that alters the microcellular environment and modulates DNA repair. Further work is required to determine whether BPA induces similar DNA lesions in vivo at environmentally relevant doses; however, in the Ku70-deficient mouse embryonic fibroblasts, exposure to a high dose of BPA was associated with changes in the cellular microenvironment that may promote survival. Citation: Gassman NR, Coskun E, Jaruga P, Dizdaroglu M, Wilson SH. 2016. Combined effects of high-dose bisphenol A and oxidizing agent (KBrO3) on cellular microenvironment, gene expression, and chromatin structure of Ku70-deficient mouse embryonic fibroblasts. Environ Health Perspect 124:1241–1252; http://dx.doi.org/10.1289/EHP237


Mutation Research-reviews in Mutation Research | 2017

Repair of Oxidatively Induced DNA Damage by DNA Glycosylases: Mechanisms of Action, Substrate Specificities and Excision Kinetics

Miral Dizdaroglu; Erdem Coskun; Pawel Jaruga

Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.


Biochemistry | 2015

Extreme Expression of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Breast Cancer As Measured by Liquid Chromatography and Isotope Dilution Tandem Mass Spectrometry

Erdem Coskun; Pawel Jaruga; Prasad T. Reddy; Miral Dizdaroglu

Apurinic/apyrimidinic endonuclease 1 (APE1) is a DNA repair protein and plays other important roles. Increased levels of APE1 in cancer have been reported. However, available methods for measuring APE1 levels are indirect and not quantitative. We previously developed an approach using liquid chromatography and tandem mass spectrometry with isotope dilution to accurately measure APE1 levels. Here, we applied this methodology to measure APE1 levels in normal and cancerous human breast tissues. Extreme expression of APE1 in malignant tumors was observed, suggesting that breast cancer cells may require APE1 for survival. Accurate measurement of APE1 may be essential for the development of novel treatment strategies and APE1 inhibitors as anticancer drugs.


Methods in Enzymology | 2016

Production, Purification and Characterization of 15N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements

Prasad T. Reddy; Pawel Jaruga; Bryant C. Nelson; Mark S. Lowenthal; Ann-Sofie Jemth; Olga Loseva; Erdem Coskun; Thomas Helleday; Miral Dizdaroglu

Oxidatively induced DNA damage is caused in living organisms by a variety of damaging agents, resulting in the formation of a multiplicity of lesions, which are mutagenic and cytotoxic. Unless repaired by DNA repair mechanisms before DNA replication, DNA lesions can lead to genomic instability, which is one of the hallmarks of cancer. Oxidatively induced DNA damage is mainly repaired by base excision repair pathway with the involvement of a plethora of proteins. Cancer tissues develop greater DNA repair capacity than normal tissues by overexpressing DNA repair proteins. Increased DNA repair in tumors that removes DNA lesions generated by therapeutic agents before they became toxic is a major mechanism in the development of therapy resistance. Evidence suggests that DNA repair capacity may be a predictive biomarker of patient response. Thus, knowledge of DNA-protein expressions in disease-free and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. Our laboratory has developed methodologies that use mass spectrometry with isotope dilution for the measurement of expression of DNA repair proteins in human tissues and cultured cells. For this purpose, full-length (15)N-labeled analogs of a number of human DNA repair proteins have been produced and purified to be used as internal standards for positive identification and accurate quantification. This chapter describes in detail the protocols of this work. The use of (15)N-labeled proteins as internal standards for the measurement of several DNA repair proteins in vivo is also presented.


International Journal of Molecular Sciences | 2017

Exposure to Engineered Nanomaterials: Impact on DNA Repair Pathways

Neenu Singh; Bryant C. Nelson; Leona D. Scanlan; Erdem Coskun; Pawel Jaruga; Shareen H. Doak

Some engineered nanomaterials (ENMs) may have the potential to cause damage to the genetic material in living systems. The mechanistic machinery functioning at the cellular/molecular level, in the form of DNA repair processes, has evolved to help circumvent DNA damage caused by exposure to a variety of foreign substances. Recent studies have contributed to our understanding of the various DNA damage repair pathways involved in the processing of DNA damage. However, the vast array of ENMs may present a relatively new challenge to the integrity of the human genome; therefore, the potential hazard posed by some ENMs necessitates the evaluation and understanding of ENM-induced DNA damage repair pathways. This review focuses on recent studies highlighting the differential regulation of DNA repair pathways, in response to a variety of ENMs, and discusses the various factors that dictate aberrant repair processes, including intracellular signalling, spatial interactions and ENM-specific responses.


Environmental Toxicology | 2017

Biomarkers of oxidatively induced DNA damage in dreissenid mussels: A genotoxicity assessment tool for the Laurentian Great Lakes

Pawel Jaruga; Erdem Coskun; Kimani Kimbrough; Annie Jacob; W. Edward Johnson; Miral Dizdaroglu

Activities of fast growing human population are altering freshwater ecosystems, endangering their inhabitants and public health. Organic and trace compounds have a high potential for adverse impacts on aquatic organisms in some Great Lakes tributaries. Toxic compounds in tissues of organisms living in contaminated environments change their metabolism and alter cellular components. We measured oxidatively induced DNA damage in the soft tissues of dreissenid mussels to check on the possible contaminant‐induced impact on their DNA. The animals were obtained from archived samples of the National Oceanic and Atmospheric Administration (NOAA) Mussel Watch Program. Mussels were collected from the harbor of Ashtabula River in Ohio, and a reference area located at the Lake Erie shore. Using gas chromatography‐tandem mass spectrometry with isotope dilution, we identified and quantified numerous oxidatively modified DNA bases and 8,5′‐cyclopurine‐2′‐deoxynucleosides. We found significant differences in the concentrations of these potentially mutagenic and/or lethal lesions in the DNA of mussels from the harbor as compared to the animals collected at the reference site. These results align NOAAs data showing that elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and heavy metals were found in mussels within the harbor as compared to mussels collected in the reference site. The measured DNA lesions can be used as biomarkers for identifying DNA damage in mussels from polluted and reference sites. Such biomarkers are needed to identify the bioeffects of contaminants in affected organisms, as well as whether remedial actions have proven successful in reducing observed toxic effects.


Clinical & Experimental Allergy | 2018

Excision-release of oxidatively-induced DNA base lesions from the lung genome by cat dander extract challenge stimulates allergic airway inflammation

Koa Hosoki; Pawel Jaruga; Toshiko Itazawa; Leopoldo Aguilera-Aguirre; Erdem Coskun; Tapas K. Hazra; Istvan Boldogh; Miral Dizdaroglu; Sanjiv Sur

Ragweed pollen extract (RWPE) induces TLR4‐NFκB‐CXCL‐dependent recruitment of ROS‐generating neutrophils to the airway and OGG1 DNA glycosylase‐dependent excision of oxidatively induced 8‐OH‐Gua DNA base lesions from the airway epithelial cell genome. Administration of free 8‐OH‐Gua base stimulates RWPE‐induced allergic lung inflammation. These studies suggest that stimulation of innate receptors and their adaptor by allergenic extracts initiates excision of a set of DNA base lesions that facilitate innate/allergic lung inflammation.

Collaboration


Dive into the Erdem Coskun's collaboration.

Top Co-Authors

Avatar

Pawel Jaruga

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Miral Dizdaroglu

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Prasad T. Reddy

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Alessandro Tona

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Mark S. Lowenthal

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryant C. Nelson

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Leona D. Scanlan

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge