Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawel Jaruga is active.

Publication


Featured researches published by Pawel Jaruga.


Free Radical Biology and Medicine | 2002

Free radical-induced damage to DNA: mechanisms and measurement.

Miral Dizdaroglu; Pawel Jaruga; Mustafa Birincioglu; Henry Rodriguez

Free radicals are produced in cells by cellular metabolism and by exogenous agents. These species react with biomolecules in cells, including DNA. The resulting damage to DNA, which is also called oxidative damage to DNA, is implicated in mutagenesis, carcinogenesis, and aging. Mechanisms of damage involve abstractions and addition reactions by free radicals leading to carbon-centered sugar radicals and OH- or H-adduct radicals of heterocyclic bases. Further reactions of these radicals yield numerous products. Various analytical techniques exist for the measurement of oxidative damage to DNA. Techniques that employ gas chromatography (GC) or liquid chromatography (LC) with mass spectrometry (MS) simultaneously measure numerous products, and provide positive identification and accurate quantification. The measurement of multiple products avoids misleading conclusions that might be drawn from the measurement of a single product, because product levels vary depending on reaction conditions and the redox status of cells. In the past, GC/MS was used for the measurement of modified sugar and bases, and DNA-protein cross-links. Recently, methodologies using LC/tandem MS (LC/MS/MS) and LC/MS techniques were introduced for the measurement of modified nucleosides. Artifacts might occur with the use of any of the measurement techniques. The use of proper experimental conditions might avoid artifactual formation of products in DNA. This article reviews mechanistic aspects of oxidative damage to DNA and recent developments in the measurement of this type of damage using chromatographic and mass spectrometric techniques.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA

Tapas K. Hazra; Tadahide Izumi; Istvan Boldogh; Barry R. Imhoff; Yoke W. Kow; Pawel Jaruga; Miral Dizdaroglu; Sankar Mitra

8-oxoguanine (8-oxoG), ring-opened purines (formamidopyrimidines or Fapys), and other oxidized DNA base lesions generated by reactive oxygen species are often mutagenic and toxic, and have been implicated in the etiology of many diseases, including cancer, and in aging. Repair of these lesions in all organisms occurs primarily via the DNA base excision repair pathway, initiated with their excision by DNA glycosylase/AP lyases, which are of two classes. One class utilizes an internal Lys residue as the active site nucleophile, and includes Escherichia coli Nth and both known mammalian DNA glycosylase/AP lyases, namely, OGG1 and NTH1. E. coli MutM and its paralog Nei, which comprise the second class, use N-terminal Pro as the active site. Here, we report the presence of two human orthologs of E. coli mutM nei genes in the human genome database, and characterize one of their products. Based on the substrate preference, we have named it NEH1 (Nei homolog). The 44-kDa, wild-type recombinant NEH1, purified to homogeneity from E. coli, excises Fapys from damaged DNA, and oxidized pyrimidines and 8-oxoG from oligodeoxynucleotides. Inactivation of the enzyme because of either deletion of N-terminal Pro or Histag fusion at the N terminus supports the role of N-terminal Pro as its active site. The tissue-specific levels of NEH1 and OGG1 mRNAs are distinct, and S phase-specific increase in NEH1 at both RNA and protein levels suggests that NEH1 is involved in replication-associated repair of oxidized bases.


Free Radical Biology and Medicine | 2002

Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome

Ryszard Olinski; Daniel Gackowski; Marek Foksinski; Rafal Rozalski; Krzysztof Roszkowski; Pawel Jaruga

Free radical attack upon DNA generates a multiplicity of DNA damage, including modified bases. Some of these modifications have considerable potential to damage the integrity of the genome. This article reviews recent data that suggest the involvement of oxidative DNA damage in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome (AIDS). There is evidence that oxidative DNA damage may play a causative role in atherosclerosis. Oxidative DNA damage may lead to apoptotic cell death of patients infected with human immunodeficiency virus (HIV) and may influence the progression of AIDS. While many details regarding the role of reactive oxygen species-induced DNA damage in the etiology of complex multifactorial diseases like cancer are yet to be discovered, evidence suggests that oxidants act at several stages in the malignant transformation of cells. However, the quantitative relationship between the measured DNA damage and the development of cancer is still lacking.


FEBS Letters | 1994

Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer

Pawel Jaruga; Tomasz H. Zastawny; Jan Skokowski; Miral Dizdaroglu; Ryszard Olinski

We have investigated levels of antioxidant enzymes and free radical‐induced DNA base modifications in human cancerous lung tissues and in their cancer‐free surrounding tissues. Various DNA base lesions in chromatin of lung tissues were measured by gas chromatography‐mass spectrometry. Activities of superoxide dismutase, catalase and glutathione peroxidase were also measured in lung tissues. Higher levels of DNA lesions were observed in cancerous tissues than in cancer‐free surrounding tissues. Antioxidant enzyme levels were lower in cancerous tissues. The results indicate an association between decreased activities of antioxidant enzymes and increased levels of DNA lesions in cancerous tissues. Higher levels of DNA lesions suggest that free radical reactions may be increased in malignant tumor cells.


Environmental Science & Technology | 2012

Copper Oxide Nanoparticle Mediated DNA Damage in Terrestrial Plant Models

Donald H. Atha; Huanhua Wang; Elijah J. Petersen; Danielle Cleveland; R. David Holbrook; Pawel Jaruga; Miral Dizdaroglu; Baoshan Xing; Bryant C. Nelson

Engineered nanoparticles, due to their unique electrical, mechanical, and catalytic properties, are presently found in many commercial products and will be intentionally or inadvertently released at increasing concentrations into the natural environment. Metal- and metal oxide-based nanomaterials have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but the molecular mechanisms through which this occurs are poorly understood. For the first time, we report that copper oxide nanoparticles induce DNA damage in agricultural and grassland plants. Significant accumulation of oxidatively modified, mutagenic DNA lesions (7,8-dihydro-8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 4,6-diamino-5-formamidopyrimidine) and strong plant growth inhibition were observed for radish (Raphanus sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum) under controlled laboratory conditions. Lesion accumulation levels mediated by copper ions and macroscale copper particles were measured in tandem to clarify the mechanisms of DNA damage. To our knowledge, this is the first evidence of multiple DNA lesion formation and accumulation in plants. These findings provide impetus for future investigations on nanoparticle-mediated DNA damage and repair mechanisms in plants.


Free Radical Research | 2012

Mechanisms of free radical-induced damage to DNA

Miral Dizdaroglu; Pawel Jaruga

Abstract Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5′-cyclopurine-2′-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.


The EMBO Journal | 2006

New functions of XPC in the protection of human skin cells from oxidative damage

Mariarosaria D'Errico; Eleonora Parlanti; Massimo Teson; Bruno M. Bernardes de Jesus; Paolo Degan; Angelo Calcagnile; Pawel Jaruga; Magnar Bjørås; Marco Crescenzi; Antonia M. Pedrini; Jean-Marc Egly; Giovanna Zambruno; Miria Stefanini; Miral Dizdaroglu; Eugenia Dogliotti

Xeroderma pigmentosum (XP) C is involved in the recognition of a variety of bulky DNA‐distorting lesions in nucleotide excision repair. Here, we show that XPC plays an unexpected and multifaceted role in cell protection from oxidative DNA damage. XP‐C primary keratinocytes and fibroblasts are hypersensitive to the killing effects of DNA‐oxidizing agents and this effect is reverted by expression of wild‐type XPC. Upon oxidant exposure, XP‐C primary keratinocytes and fibroblasts accumulate 8,5′‐cyclopurine 2′‐deoxynucleosides in their DNA, indicating that XPC is involved in their removal. In the absence of XPC, a decrease in the repair rate of 8‐hydroxyguanine (8‐OH‐Gua) is also observed. We demonstrate that XPC–HR23B complex acts as cofactor in base excision repair of 8‐OH‐Gua, by stimulating the activity of its specific DNA glycosylase OGG1. In vitro experiments suggest that the mechanism involved is a combination of increased loading and turnover of OGG1 by XPC‐HR23B complex. The accumulation of endogenous oxidative DNA damage might contribute to increased skin cancer risk and account for internal cancers reported for XP‐C patients.


Oncogene | 2005

Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1

Rachel A Egler; Elaine Fernandes; Kristi Rothermund; Susan M. Sereika; Nadja de Souza-Pinto; Pawel Jaruga; Miral Dizdaroglu; Edward V. Prochownik

Overexpression of c-Myc results in transformation and multiple other phenotypes, and is accompanied by the deregulation of a large number of target genes. We previously demonstrated that peroxiredoxin 1 (Prdx1), a scavenger of reactive oxygen species (ROS), interacts with a region of the c-Myc transcriptional regulatory domain that is essential for transformation. This results either in the suppression or enhancement of some c-Myc functions and in the altered expression of select target genes. Most notably, c-Myc-mediated transformation is inhibited, implying a tumor suppressor role for Prdx1. Consistent with this, prdx1−/− mice develop age-dependent hemolytic anemias and/or malignancies. We now show that erythrocytes and embryonic fibroblasts from these animals contain higher levels of ROS, and that the latter cells show evidence of c-Myc activation, including the ability to be transformed by a ras oncogene alone. In contrast, other primary cells from prdx1−/− mice do not have elevated ROS, but nonetheless show increased oxidative DNA damage. This apparent paradox can be explained by the fact that ROS localize primarily to the cytoplasm of prdx1+/+ cells, whereas in prdx1−/− cells, much higher levels of nuclear ROS are seen. We suggest that increased DNA damage and tumor susceptibility in prdx1−/− animals results from this shift in intracellular ROS. prdx1−/− mice should be useful in studying the role of oxidative DNA damage in the causation of cancer and its prevention by antioxidants. They should also help in studying the relationship between oncogenes such as c-Myc and DNA damage.


Journal of Biological Chemistry | 2005

Repair of Formamidopyrimidines in DNA Involves Different Glycosylases ROLE OF THE OGG1, NTH1, AND NEIL1 ENZYMES

Jingping Hu; Nadja C. de Souza-Pinto; Kazuhiro Haraguchi; Barbara A. Hogue; Pawel Jaruga; Marc M. Greenberg; Miral Dizdaroglu; Vilhelm A. Bohr

The oxidatively induced DNA lesions 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino-5-formamidopyrimidine (FapyA) are formed abundantly in DNA of cultured cells or tissues exposed to ionizing radiation or to other free radical-generating systems. In vitro studies indicate that these lesions are miscoding, can block the progression of DNA polymerases, and are substrates for base excision repair. However, no study has yet addressed how these lesions are metabolized in cellular extracts. The synthesis of oligonucleotides containing FapyG and FapyA at defined positions was recently reported. These constructs allowed us to investigate the repair of Fapy lesions in nuclear and mitochondrial extracts from wild type and knock-out mice lacking the two major DNA glycosylases for repair of oxidative DNA damage, OGG1 and NTH1. The background level of FapyG/FapyA in DNA from these mice was also determined. Endogenous FapyG levels in liver DNA from wild type mice were significantly higher than 8-hydroxyguanine levels. FapyG and FapyA were efficiently repaired in nuclear and mitochondrial extracts from wild type animals but not in the glycosylase-deficient mice. Our results indicated that OGG1 and NTH1 are the major DNA glycosylases for the removal of FapyG and FapyA, respectively. Tissue-specific analysis suggested that other DNA glycosylases may contribute to FapyA repair when NTH1 is poorly expressed. We identified NEIL1 in liver mitochondria, which could account for the residual incision activity in the absence of OGG1 and NTH1. FapyG and FapyA levels were significantly elevated in DNA from the knock-out mice, underscoring the biological role of OGG1 and NTH1 in the repair of these lesions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo

Minmin Liu; Viswanath Bandaru; Jeffrey P. Bond; Pawel Jaruga; Xiaobei Zhao; Plamen P. Christov; Cynthia J. Burrows; Carmelo J. Rizzo; Miral Dizdaroglu; Susan S. Wallace

To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while the properties of the Neil3 protein remain to be elucidated. In this study, we report the characterization of Mus musculus (house mouse) Neil3 (MmuNeil3) as an active DNA glycosylase both in vitro and in vivo. In duplex DNA, MmuNeil3 recognizes the oxidized purines, spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino- 5-formamidopyrimidine (FapyA), but not 8-oxo-7,8-dihydroguanine (8-oxoG). Interestingly, MmuNeil3 prefers lesions in single-stranded DNA and in bubble structures. In contrast to other members of the family that use the N-terminal proline as the nucleophile, MmuNeil3 forms a Schiff base intermediate via its N-terminal valine. We expressed the glycosylase domain of MmuNeil3 (MmuNeil3Δ324) in an Escherichia coli triple mutant lacking Fpg, Nei, and MutY glycosylase activities and showed that MmuNeil3 greatly reduced both the spontaneous mutation frequency and the level of FapyG in the DNA, suggesting that Neil3 plays a role in repairing FapyG in vivo.

Collaboration


Dive into the Pawel Jaruga's collaboration.

Top Co-Authors

Avatar

Miral Dizdaroglu

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Erdem Coskun

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Henry Rodriguez

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Bryant C. Nelson

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Prasad T. Reddy

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Ryszard Olinski

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guldal Kirkali

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge