Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prasad T. Reddy is active.

Publication


Featured researches published by Prasad T. Reddy.


The EMBO Journal | 1989

Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr.

Jonathan Reizer; S L Sutrina; Milton H. Saier; George C. Stewart; Alan Peterkofsky; Prasad T. Reddy

The bacterial phosphotransferase system (PTS) catalyzes the transport and phosphorylation of its sugar substrates. The protein‐kinase‐catalyzed phosphorylation of serine 46 in the phosphocarrier protein, HPr, inhibits PTS activity, but neither the mechanism of this inhibition nor its physiological significance is known. Site‐specific HPr mutants were constructed in which serine 46 was replaced by alanine (S46A), threonine (S46T), tyrosine (S46Y) or aspartate (S46D). The purified S46D protein exhibited markedly lower Vmax and higher Km values than the wild‐type, S46T or S46A protein for the phosphoryl transfer reactions involving HPr(His approximately P). Interactions of HPr with the enzymes catalyzing phosphoryl transfer to and from HPr regulated the kinase‐catalyzed reaction. These results establish the inhibitory effect of a negative charge at position 46 on PTS‐mediated phosphoryl transfer and suggest that HPr is phosphorylated on both histidyl and seryl residues by enzymes that recognize its tertiary rather than its primary structure. In vivo studies showed that a negative charge on residue 46 of HPr strongly inhibits PTS‐mediated sugar uptake, but that competition of two PTS permeases for HPr(His approximately P) is quantitatively more important to the regulation of PTS function than serine 46 phosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein.

Alexey Teplyakov; Kap Lim; Peng Peng Zhu; Geeta Kapadia; Celia C. H. Chen; Jennifer Schwartz; Andrew Howard; Prasad T. Reddy; Alan Peterkofsky; Osnat Herzberg

Bacterial transport of many sugars, coupled to their phosphorylation, is carried out by the phosphoenolpyruvate (PEP):sugar phosphotransferase system and involves five phosphoryl group transfer reactions. Sugar translocation initiates with the Mg2+-dependent phosphorylation of enzyme I (EI) by PEP. Crystals of Escherichia coli EI were obtained by mixing the protein with Mg2+ and PEP, followed by oxalate, an EI inhibitor. The crystal structure reveals a dimeric protein where each subunit comprises three domains: a domain that binds the partner PEP:sugar phosphotransferase system protein, HPr; a domain that carries the phosphorylated histidine residue, His-189; and a PEP-binding domain. The PEP-binding site is occupied by Mg2+ and oxalate, and the phosphorylated His-189 is in-line for phosphotransfer to/from the ligand. Thus, the structure represents an enzyme intermediate just after phosphotransfer from PEP and before a conformational transition that brings His-189∼P in proximity to the phosphoryl group acceptor, His-15 of HPr. A model of this conformational transition is proposed whereby swiveling around an α-helical linker disengages the His domain from the PEP-binding domain. Assuming that HPr binds to the HPr-binding domain as observed by NMR spectroscopy of an EI fragment, a rotation around two linker segments orients the His domain relative to the HPr-binding domain so that His-189∼P and His-15 are appropriately stationed for an in-line phosphotransfer reaction.


Protein Expression and Purification | 1991

Overproduction and rapid purification of the Phosphoenolpyruvate: Sugar phosphotransferase system proteins enzyme I, HPr, and Protein IIIGlc of Escherichia coli ☆

Prasad T. Reddy; Natalie Fredd-Kuldell; Ellen Liberman; Alan Peterkofsky

We present methods for the rapid, simple purification of Enzyme I, HPr, and Protein IIIGlc of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS) using plasmids overproducing gene products. The gene for HPr (ptsH) was cloned into the expression vector pKC30. A simple procedure was devised for the purification to homogeneity of this protein from extracts of heat-induced cells containing pKC30/ptsH recombinant clone. The genes for Enzyme I (ptsI) and Protein IIIGlc (crr) were cloned separately into the expression vector pRE1. Rapid purification procedures were developed for the isolation of homogeneous preparations of these two proteins from extracts of heat-induced cells containing pRE1/ptsI and pRE1/crr recombinants. From about 6 g of cells, these procedures yielded 100, 86, and 50 mg of Enzyme I, HPr, and Protein IIIGlc, respectively. The activity of the proteins purified by these methods was comparable to that of the proteins isolated by previously published less efficient procedures.


Journal of Biological Chemistry | 2009

Profound Asymmetry in the Structure of the cAMP-free cAMP Receptor Protein (CRP) from Mycobacterium tuberculosis

David T. Gallagher; Natasha Smith; Soo-Kyung Kim; Howard Robinson; Prasad T. Reddy

The cyclic AMP receptor protein (CRP, also called catabolite gene activator protein or CAP) plays a key role in metabolic regulation in bacteria and has become a widely studied model allosteric transcription factor. On binding its effector cAMP in the N-terminal domain, CRP undergoes a structural transition to a conformation capable of specific DNA binding in the C-terminal domain and transcription initiation. The crystal structures of Escherichia coli CRP (EcCRP) in the cAMP-bound state, both with and without DNA, are known, although its structure in the off state (cAMP-free, apoCRP) remains unknown. We describe the crystal structure at 2.0Å resolution of the cAMP-free CRP homodimer from Mycobacterium tuberculosis H37Rv (MtbCRP), whose sequence is 30% identical with EcCRP, as the first reported structure of an off-state CRP. The overall structure is similar to that seen for the cAMP-bound EcCRP, but the apo MtbCRP homodimer displays a unique level of asymmetry, with a root mean square deviation of 3.5Å between all Cα positions in the two subunits. Unlike structures of on-state EcCRP and other homologs in which the C-domains are asymmetrically positioned but possess the same internal conformation, the two C-domains of apo MtbCRP differ both in hinge structure and in internal arrangement, with numerous residues that have completely different local environments and hydrogen bond interactions, especially in the hinge and DNA-binding regions. Comparison of the structures of apo MtbCRP and DNA-bound EcCRP shows how DNA binding would be inhibited in the absence of cAMP and supports a mechanism involving functional asymmetry in apoCRP.


Preparative Biochemistry & Biotechnology | 1995

A rapid method for the isolation of genomic DNA from Aspergillus fumigatus

Nivedita Bir; Anubha Paliwal; K. Muralidhar; Prasad T. Reddy; P. Usha Sarma

A majority of Aspergillus induced diseases are reported to be caused by Aspergillus fumigatus. In immunocompromized and post transplant cases it can lead to invasive aspergillosis. Due to this the molecular fingerprinting of aspergillus isolates by RFLP analysis and development of DNA diagnostic probes are gaining importance. Different methodologies are being adopted for extraction of the genomic DNA from fungus. The existing procedures for isolation of DNA are time consuming and range from several hours to few days. The most difficult step in the isolation of DNA from aspergillus species is to disrupt the tough chitin rich cell wall without causing damage to genomic DNA. We report here a rapid method for extraction of genomic DNA based on the cleavage of chitin with chitinase. The subsequent modification steps included are lysis and microwave treatment. The chromosomal DNA obtained by this procedure is 1.5-2.0 micrograms per mg of wet weight of mycelia and is observed to be minimally sheared. It is pure enough for restriction analysis and for use in the PCR to detect the gene coding for 18 kDa allergen which has been identified in our laboratory using western blot analysis with human patient sera.


Journal of Proteome Research | 2011

Identification and quantification of DNA repair proteins by liquid chromatography/isotope-dilution tandem mass spectrometry using their fully 15N-labeled analogues as internal standards.

Miral Dizdaroglu; Prasad T. Reddy; Pawel Jaruga

Oxidatively induced DNA damage is implicated in disease, unless it is repaired by DNA repair. Defects in DNA repair capacity may be a risk factor for various disease processes. Thus, DNA repair proteins may be used as early detection and therapeutic biomarkers in cancer and other diseases. For this purpose, the measurement of the expression level of these proteins in vivo will be necessary. We applied liquid chromatography/isotope-dilution tandem mass spectrometry (LC-MS/MS) for the identification and quantification of DNA repair proteins human 8-hydroxyguanine-DNA glycosylase (hOGG1) and Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which are involved in base-excision repair of oxidatively induced DNA damage. We overproduced and purified (15)N-labeled analogues of these proteins to be used as suitable internal standards to ensure the accuracy of quantification. Unlabeled and (15)N-labeled proteins were digested with trypsin and analyzed by LC-MS/MS. Numerous tryptic peptides of both proteins were identified on the basis of their full-scan mass spectra. These peptides matched the theoretical peptide fragments expected from trypsin digestion and provided statistically significant protein scores that would unequivocally identify these proteins. We also recorded the product ion spectra of the tryptic peptides and defined the characteristic product ions. Mixtures of the analyte proteins and their (15)N-labeled analogues were analyzed by selected-reaction monitoring on the basis of product ions. The results obtained suggest that the methodology developed would be highly suitable for the positive identification and accurate quantification of DNA repair proteins in vivo as potential biomarkers for cancer and other diseases.


Acta Crystallographica Section D-biological Crystallography | 2000

The 1.30 A resolution structure of the Bacillus subtilis chorismate mutase catalytic homotrimer.

Jane E. Ladner; Prasad T. Reddy; Andrew Davis; Maria Tordova; Andrew Howard; Gary L. Gilliland

The crystal structure of the Bacillus subtilis chorismate mutase, an enzyme of the aromatic amino acids biosynthetic pathway, was determined to 1.30 A resolution. The structure of the homotrimer was determined by molecular replacement using orthorhombic crystals of space group P2(1)2(1)2(1) with unit-cell parameters a = 52.2, b = 83. 8, c = 86.0 A. The ABC trimer of the monoclinic crystal structure [Chook et al. (1994), J. Mol. Biol. 240, 476-500] was used as the starting model. The final coordinates are composed of three complete polypeptide chains of 127 amino-acid residues. In addition, there are nine sulfate ions, five glycerol molecules and 424 water molecules clearly visible in the structure. This structure was refined with aniosotropic temperature factors, has excellent geometry and a crystallographic R factor of 0.169 with an R(free) of 0.236. The three active sites of the macromolecule are at the subunit interfaces, with residues from two subunits contributing to each site. This orthorhombic crystal form was grown using ammonium sulfate as the precipitant; glycerol was used as a cryoprotectant during data collection. A glycerol molecule and sulfate ion in each of the active sites was found mimicking a transition-state analog. In this structure, the C-terminal tails of the subunits of the trimer are hydrogen bonded to residues of the active site of neighboring trimers in the crystal and thus cross-link the molecules in the crystal lattice.


Journal of Proteome Research | 2013

Identification and Quantification of Human DNA Repair Protein NEIL1 by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry

Prasad T. Reddy; Pawel Jaruga; Güldal Kirkali; Gamze Tuna; Bryant C. Nelson; Miral Dizdaroglu

Accumulated evidence points to DNA repair capacity as an important factor in cancer and other diseases. DNA repair proteins are promising drug targets and are emerging as prognostic and therapeutic biomarkers. Thus, the knowledge of the overexpression or underexpression levels of DNA repair proteins in tissues will be of fundamental importance. In this work, mass spectrometric assays were developed for the measurement in tissues of the human DNA repair protein NEIL1 (hNEIL1), which is involved in base excision and nucleotide excision repair pathways of oxidatively induced DNA damage. Liquid chromatography/isotope-dilution tandem mass spectrometry (LC-MS/MS), in combination with a purified and fully characterized recombinant (15)N-labeled analogue of hNEIL1 ((15)N-hNEIL1) as an internal standard, was utilized to develop an accurate method for the quantification of hNEIL1. Both hNEIL1 and (15)N-hNEIL1 were hydrolyzed with trypsin, and 18 tryptic peptides from each protein were identified by LC-MS/MS on the basis of their full-scan mass spectra. These peptides matched the theoretical peptides expected from trypsin hydrolysis of hNEIL1 and provided a statistically significant protein score that would unequivocally identify hNEIL1. The product ion spectra of the tryptic peptides from both proteins were recorded, and the characteristic product ions were defined. Selected-reaction monitoring was used to analyze mixtures of hNEIL1 and (15)N-hNEIL1 on the basis of product ions. Additional confirmation of positive identification was demonstrated via separation of the proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in-gel tryptic digestion followed by LC-MS/MS analysis. These results suggest that the developed assays would be highly suitable for the in vivo positive identification and accurate quantification of hNEIL1 in tissues.


Protein Expression and Purification | 2011

Stable isotope-labeling of DNA repair proteins, and their purification and characterization.

Prasad T. Reddy; Pawel Jaruga; Bryant C. Nelson; Mark S. Lowenthal; Miral Dizdaroglu

Reduced DNA repair capacity is associated with increased risk for a variety of disease processes including carcinogenesis. Thus, DNA repair proteins have the potential to be used as important predictive, prognostic and therapeutic biomarkers in cancer and other diseases. The measurement of the expression level of these enzymes may be an excellent tool for this purpose. Mass spectrometry is becoming the technique of choice for the identification and quantification of proteins. However, suitable internal standards must be used to ensure the precision and accuracy of measurements. An ideal internal standard in this case would be a stable isotope-labeled analog of the analyte protein. In the present work, we over-expressed, purified and characterized two stable isotope-labeled DNA glycosylases, i.e., (15)N-labeled Escherichia coli formamidopyrimidine DNA glycosylase (Fpg) and (15)N-labeled human 8-oxoguanine-DNA glycosylase (hOGG1). DNA glycosylases are involved in the first step of the base excision repair of oxidatively induced DNA damage by removing modified DNA bases. The measurement by MALDI-ToF mass spectrometry of the molecular mass and isotopic purity proved the identity of the (15)N-labeled proteins and showed that the (15)N-labeling of both proteins was more than 99.7%. We also measured the DNA glycosylase activities using gas chromatography/mass spectrometry with isotope-dilution. The enzymic activities of both (15)N-labeled Fpg and (15)N-labeled hOGG1 were essentially identical to those of their respective unlabeled counterparts, ascertaining that the labeling did not perturb their catalytic sites. The procedures described in this work may be used for obtaining stable isotope-labeled analogs of other DNA repair proteins for mass spectrometric measurements of these proteins as disease biomarkers.


Journal of Bacteriology | 2003

Cloning and Expression of the Gene for a Novel Protein from Mycobacterium smegmatis with Functional Similarity to Eukaryotic Calmodulin

Prasad T. Reddy; C R. Prasad; P H. Reddy; Dennis J. Reeder; Keith McKenney; H Jaffe; M N. Dimitrova; A Ginsburg; Alan Peterkofsky; P S. Murthy

A calmodulin-like protein (CAMLP) from Mycobacterium smegmatis was purified to homogeneity and partially sequenced; these data were used to produce a full-length clone, whose DNA sequence contained a 55-amino-acid open reading frame. M. smegmatis CAMLP, expressed in Escherichia coli, exhibited properties characteristic of eukaryotic calmodulin: calcium-dependent stimulation of eukaryotic phosphodiesterase, which was inhibited by the calmodulin antagonist trifluoperazine, and reaction with anti-bovine brain calmodulin antibodies. Consistent with the presence of nine acidic amino acids (16%) in M. smegmatis CAMLP, there is one putative calcium-binding domain in this CAMLP, compared to four such domains for eukaryotic calmodulin, reflecting the smaller molecular size (approximately 6 kDa) of M. smegmatis CAMLP. Ultracentrifugation and mass spectral studies excluded the possibility that calcium promotes oligomerization of purified M. smegmatis CAMLP.

Collaboration


Dive into the Prasad T. Reddy's collaboration.

Top Co-Authors

Avatar

Pawel Jaruga

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Miral Dizdaroglu

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Bryant C. Nelson

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Howard

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alan Peterkofsky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Erdem Coskun

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane E. Ladner

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Madhavi Kamireddi

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge