Erhu Cao
Yeshiva University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erhu Cao.
Nature | 2013
Maofu Liao; Erhu Cao; David Julius; Yifan Cheng
Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5–6 (S5–S6) and the intervening pore loop, which is flanked by S1–S4 voltage-sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with a short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.
Nature | 2013
Erhu Cao; Maofu Liao; Yifan Cheng; David Julius
Transient receptor potential (TRP) channels are polymodal signal detectors that respond to a wide range of physical and chemical stimuli. Elucidating how these channels integrate and convert physiological signals into channel opening is essential to understanding how they regulate cell excitability under normal and pathophysiological conditions. Here we exploit pharmacological probes (a peptide toxin and small vanilloid agonists) to determine structures of two activated states of the capsaicin receptor, TRPV1. A domain (consisting of transmembrane segments 1–4) that moves during activation of voltage-gated channels remains stationary in TRPV1, highlighting differences in gating mechanisms for these structurally related channel superfamilies. TRPV1 opening is associated with major structural rearrangements in the outer pore, including the pore helix and selectivity filter, as well as pronounced dilation of a hydrophobic constriction at the lower gate, suggesting a dual gating mechanism. Allosteric coupling between upper and lower gates may account for rich physiological modulation exhibited by TRPV1 and other TRP channels.
Nature | 2016
Yuan Gao; Erhu Cao; David Julius; Yifan Cheng
When integral membrane proteins are visualized in detergents or other artificial systems, an important layer of information is lost regarding lipid interactions and their effects on protein structure. This is especially relevant to proteins for which lipids play both structural and regulatory roles. Here, we demonstrate the power of combining electron cryo-microscopy with lipid nanodisc technology to ascertain the structure of the TRPV1 ion channel in a native bilayer environment. Using this approach, we determined the locations of annular and regulatory lipids and showed that specific phospholipid interactions enhance binding of a spider toxin to TRPV1 through formation of a tripartite complex. Furthermore, phosphatidylinositol lipids occupy the binding site for capsaicin and other vanilloid ligands, suggesting a mechanism whereby chemical or thermal stimuli elicit channel activation by promoting release of bioactive lipids from a critical allosteric regulatory site.
Immunity | 2004
Xuewu Zhang; Jean Claude D Schwartz; Xiaoling Guo; Sumeena Bhatia; Erhu Cao; Lieping Chen; Zhong Yin Zhang; Michael Edidin; Stanley G. Nathenson; Steven C. Almo
PD-1, a member of the CD28/CTLA-4/ICOS costimulatory receptor family, delivers negative signals that have profound effects on T and B cell immunity. The 2.0 A crystal structure of the extracellular domain of murine PD-1 reveals an Ig V-type topology with overall similarity to the CTLA-4 monomer; however, there are notable differences in regions relevant to function. Our structural and biophysical data show that PD-1 is monomeric both in solution as well as on cell surface, in contrast to CTLA-4 and other family members that are all disulfide-linked homodimers. Furthermore, our structure-based mutagenesis studies identify the ligand binding surface of PD-1, which displays significant differences compared to those present in the other members of the family.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Eszter Lazar-Molnar; Qingrong Yan; Erhu Cao; Udupi A. Ramagopal; Stanley G. Nathenson; Steven C. Almo
Programmed death-1 (PD-1) is a member of the CD28/B7 superfamily that delivers negative signals upon interaction with its two ligands, PD-L1 or PD-L2. The high-resolution crystal structure of the complex formed by the complete ectodomains of murine PD-1 and PD-L2 revealed a 1:1 receptor:ligand stoichiometry and displayed a binding interface and overall molecular organization distinct from that observed in the CTLA-4/B7 inhibitory complexes. Furthermore, our structure also provides insights into the association between PD-1 and PD-L1 and highlights differences in the interfaces formed by the two PD-1 ligands (PD-Ls) Mutagenesis studies confirmed the details of the proposed PD-1/PD-L binding interfaces and allowed for the design of a mutant PD-1 receptor with enhanced affinity. These studies define spatial and organizational constraints that control the localization and signaling of PD-1/PD-L complexes within the immunological synapse and provide a basis for manipulating the PD-1 pathways for immunotherapy.
Applied and Environmental Microbiology | 2005
Yi Yu; Linquan Bai; Kazuyuki Minagawa; Xiaohong Jian; Lei Li; Jialiang Li; Shuangya Chen; Erhu Cao; Taifo Mahmud; Heinz G. Floss; Xiufen Zhou; Zixin Deng
ABSTRACT A gene cluster responsible for the biosynthesis of validamycin, an aminocyclitol antibiotic widely used as a control agent for sheath blight disease of rice plants, was identified from Streptomyces hygroscopicus subsp. jinggangensis 5008 using heterologous probe acbC, a gene involved in the cyclization of d-sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone of the acarbose biosynthetic gene cluster originated from Actinoplanes sp. strain SE50/110. Deletion of a 30-kb DNA fragment from this cluster in the chromosome resulted in loss of validamycin production, confirming a direct involvement of the gene cluster in the biosynthesis of this important plant protectant. A sequenced 6-kb fragment contained valA (an acbC homologue encoding a putative cyclase) as well as two additional complete open reading frames (valB and valC, encoding a putative adenyltransferase and a kinase, respectively), which are organized as an operon. The function of ValA was genetically demonstrated to be essential for validamycin production and biochemically shown to be responsible specifically for the cyclization of d-sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone in vitro using the ValA protein heterologously overexpressed in E. coli. The information obtained should pave the way for further detailed analysis of the complete biosynthetic pathway, which would lead to a complete understanding of validamycin biosynthesis.
Current Opinion in Structural Biology | 2014
Maofu Liao; Erhu Cao; David Julius; Yifan Cheng
The transient receptor potential (TRP) ion channel family is large and functionally diverse, second only to potassium channels. Despite their prominence within the animal kingdom, TRP channels have resisted crystallization and structural determination for many years. This barrier was recently broken when the three-dimensional structure of the vanilloid receptor 1 (TRPV1) was determined by single particle electron cryo-microscopy (cryo-EM). Moreover, this is the first example in which the near atomic resolution structure of an integral membrane protein was elucidated by this technique and in a manner not requiring crystals, demonstrating the transformative power of single particle cryo-EM for revealing high-resolution structures of integral membrane proteins, particularly those of mammalian origin. Here we summarize technical advances, in both biochemistry and cryo-EM, that led to this major breakthrough.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Qingrong Yan; Vladimir N. Malashkevich; Alexander A. Fedorov; Elena V. Fedorov; Erhu Cao; Jeffrey W. Lary; James L. Cole; Stanley G. Nathenson; Steven C. Almo
The signaling lymphocyte activation molecule (SLAM) family includes homophilic and heterophilic receptors that modulate both adaptive and innate immune responses. These receptors share a common ectodomain organization: a membrane-proximal immunoglobulin constant domain and a membrane-distal immunoglobulin variable domain that is responsible for ligand recognition. CD84 is a homophilic family member that enhances IFN-γ secretion in activated T cells. Our solution studies revealed that CD84 strongly self-associates with a Kd in the submicromolar range. These data, in combination with previous reports, demonstrate that the SLAM family homophilic affinities span at least three orders of magnitude and suggest that differences in the affinities may contribute to the distinct signaling behavior exhibited by the individual family members. The 2.0 Å crystal structure of the human CD84 immunoglobulin variable domain revealed an orthogonal homophilic dimer with high similarity to the recently reported homophilic dimer of the SLAM family member NTB-A. Structural and chemical differences in the homophilic interfaces provide a mechanism to prevent the formation of undesired heterodimers among the SLAM family homophilic receptors. These structural data also suggest that, like NTB-A, all SLAM family homophilic dimers adopt a highly kinked organization spanning an end-to-end distance of ≈140 Å. This common molecular dimension provides an opportunity for all two-domain SLAM family receptors to colocalize within the immunological synapse and bridge the T cell and antigen-presenting cell.
Nature Communications | 2018
Wang Zheng; Xiaoyong Yang; Ruikun Hu; Ruiqi Cai; Laura Hofmann; Zhifei Wang; Qiaolin Hu; Xiong Liu; David Bulkey; Yong Yu; Jingfeng Tang; Veit Flockerzi; Ying Cao; Erhu Cao; Xing-Zhen Chen
PKD2 and PKD1 genes are mutated in human autosomal dominant polycystic kidney disease. PKD2 can form either a homomeric cation channel or a heteromeric complex with the PKD1 receptor, presumed to respond to ligand(s) and/or mechanical stimuli. Here, we identify a two-residue hydrophobic gate in PKD2L1, and a single-residue hydrophobic gate in PKD2. We find that a PKD2 gain-of-function gate mutant effectively rescues PKD2 knockdown-induced phenotypes in embryonic zebrafish. The structure of a PKD2 activating mutant F604P by cryo-electron microscopy reveals a π- to α-helix transition within the pore-lining helix S6 that leads to repositioning of the gate residue and channel activation. Overall the results identify hydrophobic gates and a gating mechanism of PKD2 and PKD2L1.Mutations in the cation channel PKD2 cause human autosomal dominant polycystic kidney disease but its channel function and gating mechanism are poorly understood. Here authors study PKD2 using electrophysiology and cryo-EM, which identifies hydrophobic gates and proposes a gating mechanism for PKD2.
Neuron | 2013
Erhu Cao; Julio F. Cordero-Morales; Beiying Liu; Feng Qin; David Julius