Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiannong Li is active.

Publication


Featured researches published by Jiannong Li.


Nature Chemical Biology | 2010

A chemical and phosphoproteomic characterization of dasatinib action in lung cancer

Jiannong Li; Uwe Rix; Bin Fang; Yun Bai; Arthur Edwards; Jacques Colinge; Keiryn L. Bennett; Jingchun Gao; Lanxi Song; Steven Eschrich; Giulio Superti-Furga; John M. Koomen; Eric B. Haura

We describe a strategy to comprehend signaling pathways active in lung cancer cells and targeted by dasatinib employing chemical proteomics to identify direct interacting proteins combined with immunoaffinity purification of tyrosine phosphorylated peptides corresponding to activated tyrosine kinases. We identified nearly 40 different kinase targets of dasatinib. These include SFK members (LYN, SRC, FYN, LCK, YES), non-receptor tyrosine kinases (FRK, BRK, ACK), and receptor tyrosine kinases (Ephrin receptors, DDR1, EGFR). Using quantitative phosphoproteomics we identified peptides corresponding to autophosphorylation sites of these tyrosine kinases that are inhibited in a concentration-dependent manner by dasatinib. Using drug resistant gatekeeper mutants, we show that SFK kinases, particularly SRC and FYN, as well as EGFR are relevant targets for dasatinib action. The combined mass spectrometry based approach described here provides a system-level view of dasatinib action in cancer cells and suggests both functional targets and rationale combinatorial therapeutic strategies.


Molecular Cancer Therapeutics | 2007

Effect of the histone deacetylase inhibitor LBH589 against epidermal growth factor receptor-dependent human lung cancer cells.

Arthur Edwards; Jiannong Li; Peter Atadja; Kapil N. Bhalla; Eric B. Haura

Activating mutations in the epidermal growth factor receptor (EGFR) selectively activate signal transducers and activators of transcription (STAT) and Akt survival signaling pathways important in lung cancer cell growth and survival. Many kinases, such as EGFR, rely on heat shock protein 90 (Hsp90) chaperone function for conformational maturation and proper function. Histone deacetylase inhibitors (HDACi) have been suggested to regulate signaling protein interactions via modulation of protein chaperone function through Hsp90. For these reasons, we evaluated the effect of a HDACi in lung cancer cells with defined EGFR status. Cell lines with defined EGFR status and sensitivity to EGFR tyrosine kinase inhibitors were exposed to the HDACi LBH589, and the effects on cell survival, proliferation, and downstream signaling were evaluated. LBH589 resulted in increased acetylation of Hsp90 and reduced association of Hsp90 with EGFR, Akt, and STAT3. LBH589 selectively depleted proteins important in signaling cascades in cell lines harboring EGFR kinase mutations, such as EGFR, STAT3, and Akt, and these cells underwent apoptosis following exposure to LBH589. In addition, we found depletion of STAT3-dependent survival proteins, including Bcl-xL, Mcl-1, and Bcl-2. Conversely, LBH589 had little effect on apoptosis in cells not dependent on EGFR for survival, no changes were identified in the expression of EGFR or other survival proteins, and the predominant effect was cell cycle arrest rather than apoptosis. A 10-fold increase in LBH589 was necessary to observe durable depletion of EGFR and Akt in cells not harboring EGFR mutation. Treatment of cells with erlotinib and LBH589 resulted in synergistic effects on lung cancer cells dependent on EGFR for growth and/or survival. Based on these results, LBH589 can acetylate Hsp90, deplete EGFR and other key survival signaling proteins, and trigger apoptosis only in lung cancer cells harboring EGFR mutations. Therefore, EGFR mutation status may be predictive of outcome with LBH589 and possibly other HDACi. [Mol Cancer Ther 2007;6(9):2515–24]


Cancer Chemotherapy and Pharmacology | 2008

A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells.

Jiannong Li; Jean Viallet; Eric B. Haura

PurposeOverexpression of Bcl-2 family members as well as deregulated apoptosis pathways are known hallmarks of lung cancer. Non-small cell lung cancer (NSCLC) cells are typically resistant to cytotoxic chemotherapy and approaches that alter the balance between pro-survival and pro-death Bcl-2 family members have shown promise in preclinical models of NSCLC.MethodsHere we evaluated the effects of a novel pan-Bcl-2 inhibitor GX15-070 on NSCLC survival and when combined with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors as well as traditional cytotoxic agents. GX15-070 is a small molecule agent that binds anti-apoptotic Bcl-2 proteins and interferes with their ability to interact with pro-apoptotic proteins. We evaluated the effect of GX15-070 and correlated the effect on EGFR status as well as Bcl-2 family protein expression.ResultsWe show that GX15-070 can disrupt Mcl-1:Bak interactions in lung cancer cells. We identified differential sensitivity of a panel of lung cancer cells to GX15-070 and no clear relationship existed between EGFR status or Bcl-2 family protein expression and sensitivity to GX15-070. GX15-070 could induce apoptosis in a subset of lung cancer cell lines and this correlated with the effects on cell viability. GX15-070 combined with gefitinib was synergistic in a cell line dependent on EGFR for survival but GX15-070 could not reverse resistance to gefitinib in cell lines not dependent on EGFR for survival. Finally, we observed synergy between GX15-070 and cisplatin in NSCLC cells.ConclusionsBased on these results, GX15-070 can trigger apoptosis in NSCLC cells and can enhance chemotherapy-induced death. These data suggest that clinical trials with GX15-070 in combination with cytotoxic chemotherapy are indicated.


Cancer Research | 2012

Phosphoproteomics Identifies Driver Tyrosine Kinases in Sarcoma Cell Lines and Tumors

Yun Bai; Jiannong Li; Bin Fang; Arthur Edwards; Guolin Zhang; Marilyn M. Bui; Steven Eschrich; Soner Altiok; John M. Koomen; Eric B. Haura

Driver tyrosine kinase mutations are rare in sarcomas, and patterns of tyrosine phosphorylation are poorly understood. To better understand the signaling pathways active in sarcoma, we examined global tyrosine phosphorylation in sarcoma cell lines and human tumor samples. Anti-phosphotyrosine antibodies were used to purify tyrosine phosphorylated peptides, which were then identified by liquid chromatography and tandem mass spectrometry. The findings were validated with RNA interference, rescue, and small-molecule tyrosine kinase inhibitors. We identified 1,936 unique tyrosine phosphorylated peptides, corresponding to 844 unique phosphotyrosine proteins. In sarcoma cells alone, peptides corresponding to 39 tyrosine kinases were found. Four of 10 cell lines showed dependence on tyrosine kinases for growth and/or survival, including platelet-derived growth factor receptor (PDGFR)α, MET, insulin receptor/insulin-like growth factor receptor signaling, and SRC family kinase signaling. Rhabdomyosarcoma samples showed overexpression of PDGFRα in 13% of examined cases, and sarcomas showed abundant tyrosine phosphorylation and expression of a number of tyrosine phosphorylated tyrosine kinases, including DDR2, EphB4, TYR2, AXL, SRC, LYN, and FAK. Together, our findings suggest that integrating global phosphoproteomics with functional analyses with kinase inhibitors can identify drivers of sarcoma growth and survival.


Clinical Cancer Research | 2014

Tyrosine Phosphoproteomics Identifies Both Codrivers and Cotargeting Strategies for T790M-Related EGFR-TKI Resistance in Non–Small Cell Lung Cancer

Takeshi Yoshida; Guolin Zhang; Matthew A. Smith; Alex S. Lopez; Yun Bai; Jiannong Li; Bin Fang; John M. Koomen; Bhupendra Rawal; Kate Fisher; Y. Ann Chen; Michiko Kitano; Yume Morita; Haruka Yamaguchi; Kiyoko Shibata; Takafumi Okabe; Isamu Okamoto; Kazuhiko Nakagawa; Eric B. Haura

Purpose: Irreversible EGFR-tyrosine kinase inhibitors (TKI) are thought to be one strategy to overcome EGFR-TKI resistance induced by T790M gatekeeper mutations in non–small cell lung cancer (NSCLC), yet they display limited clinical efficacy. We hypothesized that additional resistance mechanisms that cooperate with T790M could be identified by profiling tyrosine phosphorylation in NSCLC cells with acquired resistance to reversible EGFR-TKI and harboring T790M. Experimental Design: We profiled PC9 cells with TKI-sensitive EGFR mutation and paired EGFR-TKI–resistant PC9GR (gefitinib-resistant) cells with T790M using immunoaffinity purification of tyrosine-phosphorylated peptides and mass spectrometry–based identification/quantification. Profiles of erlotinib perturbations were examined. Results: We observed a large fraction of the tyrosine phosphoproteome was more abundant in PC9- and PC9GR-erlotinib–treated cells, including phosphopeptides corresponding to MET, IGF, and AXL signaling. Activation of these receptor tyrosine kinases by growth factors could protect PC9GR cells against the irreversible EGFR-TKI afatinib. We identified a Src family kinase (SFK) network as EGFR-independent and confirmed that neither erlotinib nor afatinib affected Src phosphorylation at the activation site. The SFK inhibitor dasatinib plus afatinib abolished Src phosphorylation and completely suppressed downstream phosphorylated Akt and Erk. Dasatinib further enhanced antitumor activity of afatinib or T790M-selective EGFR-TKI (WZ4006) in proliferation and apoptosis assays in multiple NSCLC cell lines with T790M-mediated resistance. This translated into tumor regression in PC9GR xenograft studies with combined afatinib and dasatinib. Conclusions: Our results identified both codrivers of resistance along with T790M and support further studies of irreversible or T790M-selective EGFR inhibitors combined with dasatinib in patients with NSCLC with acquired T790M. Clin Cancer Res; 20(15); 4059–74. ©2014 AACR.


Journal of Proteome Research | 2011

Mass Spectrometry Mapping of Epidermal Growth Factor Receptor Phosphorylation Related to Oncogenic Mutations and Tyrosine Kinase Inhibitor Sensitivity

Guolin Zhang; Bin Fang; Richard Z. Liu; Hui-Yi Lin; Fumi Kinose; Yun Bai; Umut Oguz; Elizabeth Remily-Wood; Jiannong Li; Soner Altiok; Steven Eschrich; John M. Koomen; Eric B. Haura

The epidermal growth factor receptor (EGFR) plays an important role in cancer by activating downstream signals important in growth and survival. Inhibitors of EGFR are frequently selected as treatment for cancer including lung cancer. We performed an unbiased and comprehensive search for EGFR phosphorylation events related to somatic activating mutations and EGFR inhibitor (erlotinib) sensitivity. EGFR immunoprecipitation combined with high resolution liquid chromatography-mass spectrometry and label free quantitation characterized EGFR phosphorylation. Thirty (30) phosphorylation sites were identified including 12 tyrosine (pY), 12 serine (pS), and 6 threonine (pT). Site-specific phosphorylation was monitored by comparing ion signals from the corresponding unmodified peptide. Phosphorylation sites related to activating mutations in EGFR as well as sensitivity to erlotinib were identified using 31 lung cancer cell lines. We identified three sites (pY1092, pY1110, pY1172) correlated with activating mutations and three sites (pY1110, pY1172, pY1197) correlated with erlotinib sensitivity. Five sites (pT693, pY1092, pY1110, pY1172, and pY1197) were inhibited by erlotinib in concentration-dependent manner. Erlotinib sensitivity was confirmed using liquid chromatography coupled to multiple reaction monitoring (LC-MRM) and quantitative Western blotting. This LC-MS/MS strategy can quantitatively assess site-specific EGFR phosphorylation and can identify relationships between somatic mutations or drug sensitivity and protein phosphorylation.


ACS Chemical Biology | 2014

GSK3 Alpha and Beta Are New Functionally Relevant Targets of Tivantinib in Lung Cancer Cells

Lily L. Remsing Rix; Brent M. Kuenzi; Yunting Luo; Elizabeth Remily-Wood; Fumi Kinose; Gabriela Wright; Jiannong Li; John M. Koomen; Eric B. Haura; Harshani R. Lawrence; Uwe Rix

Tivantinib has been described as a potent and highly selective inhibitor of the receptor tyrosine kinase c-MET and is currently in advanced clinical development for several cancers including non-small cell lung cancer (NSCLC). However, recent studies suggest that tivantinibs anticancer properties are unrelated to c-MET inhibition. Consistently, in determining tivantinibs activity profile in a broad panel of NSCLC cell lines, we found that, in contrast to several more potent c-MET inhibitors, tivantinib reduces cell viability across most of these cell lines. Applying an unbiased, mass-spectrometry-based, chemical proteomics approach, we identified glycogen synthase kinase 3 (GSK3) alpha and beta as novel tivantinib targets. Subsequent validation showed that tivantinib displayed higher potency for GSK3α than for GSK3β and that pharmacological inhibition or simultaneous siRNA-mediated loss of GSK3α and GSK3β caused apoptosis. In summary, GSK3α and GSK3β are new kinase targets of tivantinib that play an important role in its cellular mechanism-of-action in NSCLC.


PLOS ONE | 2016

ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer.

Takeshi Yoshida; Lanxi Song; Yun Bai; Fumi Kinose; Jiannong Li; Kim Ohaegbulam; Teresita Muñoz-Antonia; Xiaotao Qu; Steven Eschrich; Hidetaka Uramoto; Fumihiro Tanaka; Patrick Nasarre; Robert M. Gemmill; Joëlle Roche; Harry A. Drabkin; Eric B. Haura

Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.


Journal of Medicinal Chemistry | 2012

Fragment-based and structure-guided discovery and optimization of Rho kinase inhibitors.

Rongshi Li; Mathew P. Martin; Yan Liu; Binglin Wang; Ronil Patel; Jin Yi Zhu; Nan Sun; Roberta Pireddu; Nicholas J. Lawrence; Jiannong Li; Eric B. Haura; Shen-Shu Sung; Wayne C. Guida; Ernst Schönbrunn; Said M. Sebti

Using high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC(50) = 650 nM) and ROCK2 (IC(50) = 670 nM), whereas compound 24 was more selective for ROCK2 (IC(50) = 100 nM) over ROCK1 (IC(50) = 1690 nM). The crystal structure of the compound 18-ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site. Compounds 18 and 24 inhibited potently the phosphorylation of the ROCK substrate MLC2 in intact human breast cancer cells.


PLOS ONE | 2010

Characterizing Tyrosine Phosphorylation Signaling in Lung Cancer Using SH2 Profiling

Kazuya Machida; Steven Eschrich; Jiannong Li; Yun Bai; John M. Koomen; Bruce J. Mayer; Eric B. Haura

Background Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human cancer specimens is technically challenging using current methods. Methodology/Principal Findings We used a phosphoproteomic method termed SH2 profiling to characterize the global state of phosphotyrosine (pTyr) signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR) or K-RAS mutation status. Binding of specific SH2 domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition. Conclusions/Significance This study illustrates the potential of modular protein domains and their proteomic binding profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification.

Collaboration


Dive into the Jiannong Li's collaboration.

Top Co-Authors

Avatar

Eric B. Haura

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

John M. Koomen

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Bin Fang

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Steven Eschrich

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Fumi Kinose

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Guolin Zhang

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Uwe Rix

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Eric A. Welsh

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lanxi Song

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Y. Ann Chen

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge