Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric J. Brown is active.

Publication


Featured researches published by Eric J. Brown.


Nature | 2005

The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor.

Stephan Gasser; Sandra Orsulic; Eric J. Brown; David H. Raulet

Some stimulatory receptors of the innate immune system, such as the NKG2D receptor (also called KLRK1) expressed by natural killer cells and activated CD8+T cells, recognize self-molecules that are upregulated in diseased cells by poorly understood mechanisms. Here we show that mouse and human NKG2D ligands are upregulated in non-tumour cell lines by genotoxic stress and stalled DNA replication, conditions known to activate a major DNA damage checkpoint pathway initiated by ATM (ataxia telangiectasia, mutated) or ATR (ATM- and Rad3-related) protein kinases. Ligand upregulation was prevented by pharmacological or genetic inhibition of ATR, ATM or Chk1 (a downstream transducer kinase in the pathway). Furthermore, constitutive ligand expression by a tumour cell line was inhibited by targeting short interfering RNA to ATM, suggesting that ligand expression in established tumour cells, which often harbour genomic irregularities, may be due to chronic activation of the DNA damage response pathway. Thus, the DNA damage response, previously shown to arrest the cell cycle and enhance DNA repair functions, or to trigger apoptosis, may also participate in alerting the immune system to the presence of potentially dangerous cells.


Cancer Research | 2005

Epithelial to Mesenchymal Transition Is a Determinant of Sensitivity of Non–Small-Cell Lung Carcinoma Cell Lines and Xenografts to Epidermal Growth Factor Receptor Inhibition

Stuart Thomson; Elizabeth Buck; Filippo Petti; Graeme Griffin; Eric J. Brown; Nishal Ramnarine; Kenneth K. Iwata; Neil W. Gibson; John D. Haley

Treatment of second- and third-line patients with non-small-cell lung carcinoma (NSCLC) with the epidermal growth factor receptor (EGFR) kinase inhibitor erlotinib significantly increased survival relative to placebo. Whereas patient tumors with EGFR mutations have shown responses to EGFR inhibitors, an exclusive role for mutations in patient survival benefit from EGFR inhibition is unclear. Here we show that wild-type EGFR-containing human NSCLC lines grown both in culture and as xenografts show a range of sensitivities to EGFR inhibition dependent on the degree to which they have undergone an epithelial to mesenchymal transition (EMT). NSCLC lines which express the epithelial cell junction protein E-cadherin showed greater sensitivity to EGFR inhibition in vitro and in xenografts. In contrast, NSCLC lines having undergone EMT, expressing vimentin and/or fibronectin, were insensitive to the growth inhibitory effects of EGFR kinase inhibition in vitro and in xenografts. The differential sensitivity of NSCLC cells with epithelial or mesenchymal phenotypes to EGFR inhibition did not correlate with cell cycle status in vitro or with xenograft growth rates in vivo, or with total EGFR protein levels. Cells sensitive to EGFR inhibition, with an epithelial cell phenotype, did exhibit increased phosphorylation of EGFR and ErbB3 and a marked increase in total ErbB3. The loss of E-cadherin and deregulation of beta-catenin associated with EMT have been shown to correlate with poor prognosis in multiple solid tumor types. These data suggest that EMT may be a general biological switch rendering non-small cell lung tumors sensitive or insensitive to EGFR inhibition.


Cell Stem Cell | 2007

Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss.

Yaroslava Ruzankina; Carolina Pinzon-Guzman; Amma Asare; Tony Ong; Laura Pontano; George Cotsarelis; Valerie P. Zediak; Marielena Velez; Avinash Bhandoola; Eric J. Brown

Developmental abnormalities, cancer, and premature aging each have been linked to defects in the DNA damage response (DDR). Mutations in the ATR checkpoint regulator cause developmental defects in mice (pregastrulation lethality) and humans (Seckel syndrome). Here we show that eliminating ATR in adult mice leads to defects in tissue homeostasis and the rapid appearance of age-related phenotypes, such as hair graying, alopecia, kyphosis, osteoporosis, thymic involution, fibrosis, and other abnormalities. Histological and genetic analyses indicate that ATR deletion causes acute cellular loss in tissues in which continuous cell proliferation is required for maintenance. Importantly, thymic involution, alopecia, and hair graying in ATR knockout mice were associated with dramatic reductions in tissue-specific stem and progenitor cells and exhaustion of tissue renewal and homeostatic capacity. In aggregate, these studies suggest that reduced regenerative capacity in adults via deletion of a developmentally essential DDR gene is sufficient to cause the premature appearance of age-related phenotypes.


Journal of Clinical Investigation | 1996

Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes.

Dennis F. Kucik; Michael L. Dustin; Jim M. Miller; Eric J. Brown

Lymphocytes activate adhesion to intracellular adhesion mlecule 1 (ICAM-1) via leukocyte function associated antigen 1 (LFA-1), their major beta 2 integrin, in response to PMA (phorbol 12-myristate 13-acetate) without an increase in the number of receptors expressed. The molecular details of the mechanism are unknown. To determine the effect of PMA activation on LFA-1 movement within the plasma membrane, we used the single particle tracking technique to measure the diffusion rate of LFA-1 molecules on EBV-transformed B cells before and after PMA activation. Diffusion of LFA-1 on unactivated cells was restricted compared to CR1 (CD35), another transmembrane protein of equivalent size. PMA caused a 10-fold increase in the diffusion rate of LFA-1 without any effect on CD35. The increased LFA-1 motion induced by PMA was random, not directed, indicating that it was due to a release of constraints rather than the application of forces. The diffusion rates of LFA-1 are consistent with cytoskeletal attachment before and free diffusion after PMA. Cytochalasin D led to an equivalent increase in mobility and, at low doses, stimulated adhesion, implying that the nonadhesive state of LFA-1 is actively maintained by the lymphocyte cytoskeleton.


Journal of Clinical Investigation | 2005

Activation of Notch1 signaling is required for β-catenin–mediated human primary melanoma progression

Klara Balint; Min Xiao; Chelsea C. Pinnix; Akinobu Soma; Imre Veres; István Juhász; Eric J. Brown; Anthony J. Capobianco; Meenhard Herlyn; Zhao Jun Liu

Notch is a highly conserved transmembrane receptor that determines cell fate. Notch signaling denotes cleavage of the Notch intracellular domain, its translocation to the nucleus, and subsequent activation of target gene transcription. Involvement of Notch signaling in several cancers is well known, but its role in melanoma remains poorly characterized. Here we show that the Notch1 pathway is activated in human melanoma. Blocking Notch signaling suppressed whereas constitutive activation of the Notch1 pathway enhanced primary melanoma cell growth both in vitro and in vivo yet had little effect on metastatic melanoma cells. Activation of Notch1 signaling enabled primary melanoma cells to gain metastatic capability. Furthermore, the oncogenic effect of Notch1 on primary melanoma cells was mediated by beta-catenin, which was upregulated following Notch1 activation. Inhibiting beta-catenin expression reversed Notch1-enhanced tumor growth and metastasis. Our data therefore suggest a beta-catenin-dependent, stage-specific role for Notch1 signaling in promoting the progression of primary melanoma.


Molecular Cancer Therapeutics | 2006

Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non–small-cell lung, pancreatic, colon, and breast tumors

Elizabeth Buck; Alexandra Eyzaguirre; Eric J. Brown; Filippo Petti; Siobhan McCormack; John D. Haley; Kenneth K. Iwata; Neil W. Gibson; Graeme Griffin

The receptor for epidermal growth factor (EGFR) is overexpressed in many cancers. One important signaling pathway regulated by EGFR is the phosphatidylinositol 3′-kinase (PI3K)-phosphoinositide-dependent kinase 1-Akt pathway. Activation of Akt leads to the stimulation of antiapoptotic pathways, promoting cell survival. Akt also regulates the mammalian target of rapamycin (mTOR)-S6K-S6 pathway to control cell growth in response to growth factors and nutrients. Recent reports have shown that the sensitivity of non–small-cell lung cancer cell lines to EGFR inhibitors such as erlotinib (Tarceva, OSI Pharmaceuticals) is dependent on inhibition of the phosphatidylinositol 3′-kinase-phosphoinositide-dependent kinase 1-Akt-mTOR pathway. There can be multiple inputs to this pathway as activity can be regulated by other receptors or upstream mutations. Therefore, inhibiting EGFR alone may not be sufficient for substantial inhibition of all tumor cells, highlighting the need for multipoint intervention. Herein, we sought to determine if rapamycin, an inhibitor of mTOR, could enhance erlotinib sensitivity for cell lines derived from a variety of tissue types (non–small-cell lung, pancreatic, colon, and breast). Erlotinib could inhibit extracellular signal-regulated kinase, Akt, and S6 only in cell lines that were the most sensitive. Rapamycin could fully inhibit S6 in all cell lines, but this was accompanied by activation of Akt phosphorylation. However, combination with erlotinib could down-modulate rapamycin-stimulated Akt activity. Therefore, in select cell lines, inhibition of both S6 and Akt was achieved only with the combination of erlotinib and rapamycin. This produced a synergistic effect on cell growth inhibition, observations that extended in vivo using xenograft models. These results suggest that combining rapamycin with erlotinib might be clinically useful to enhance response to erlotinib. [Mol Cancer Ther 2006;5(11):2676–84]


The EMBO Journal | 2007

Dysfunctional telomeres activate an ATM‐ATR‐dependent DNA damage response to suppress tumorigenesis

Xiaolan Guo; Yibin Deng; Yahong Lin; Wilfredo Cosme-Blanco; Suzanne Chan; Hua He; Guohua Yuan; Eric J. Brown; Sandy Chang

The POT1 (protection of telomeres) protein binds the single‐stranded G‐rich overhang and is essential for both telomere end protection and telomere length regulation. Telomeric binding of POT1 is enhanced by its interaction with TPP1. In this study, we demonstrate that mouse Tpp1 confers telomere end protection by recruiting Pot1a and Pot1b to telomeres. Knockdown of Tpp1 elicits a p53‐dependent growth arrest and an ATM‐dependent DNA damage response at telomeres. In contrast to depletion of Trf2, which activates ATM, removal of Pot1a and Pot1b from telomeres initiates an ATR‐dependent DNA damage response (DDR). Finally, we show that telomere dysfunction as a result of Tpp1 depletion promotes chromosomal instability and tumorigenesis in the absence of an ATM‐dependent DDR. Our results uncover a novel ATR‐dependent DDR at telomeres that is normally shielded by POT1 binding to the single‐stranded G‐overhang. In addition, our results suggest that loss of ATM can cooperate with dysfunctional telomeres to promote cellular transformation and tumor formation in vivo.


Cancer Research | 2008

Feedback Mechanisms Promote Cooperativity for Small Molecule Inhibitors of Epidermal and Insulin-Like Growth Factor Receptors

Elizabeth Buck; Alexandra Eyzaguirre; Maryland Rosenfeld-Franklin; Stuart Thomson; Mark J. Mulvihill; Sharon Barr; Eric J. Brown; Mathew O'Connor; Yan Yao; Jonathan A. Pachter; Mark R. Miglarese; David M. Epstein; Kenneth K. Iwata; John D. Haley; Neil W. Gibson; Qun-Sheng Ji

Epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR) can cooperate to regulate tumor growth and survival, and synergistic growth inhibition has been reported for combined blockade of EGFR and IGF-IR. However, in preclinical models, only a subset of tumors exhibit high sensitivity to this combination, highlighting the potential need for patient selection to optimize clinical efficacy. Herein, we have characterized the molecular basis for cooperative growth inhibition upon dual EGFR and IGF-IR blockade and provide biomarkers that seem to differentiate response. We find for epithelial, but not for mesenchymal-like, tumor cells that Akt is controlled cooperatively by EGFR and IGF-IR. This correlates with synergistic apoptosis and growth inhibition in vitro and growth regression in vivo upon combined blockade of both receptors. We identified two molecular aspects contributing to synergy: (a) inhibition of EGFR or IGF-IR individually promotes activation of the reciprocal receptor; (b) inhibition of EGFR-directed mitogen-activated protein kinase (MAPK) shifts regulation of Akt from EGFR toward IGF-IR. Targeting the MAPK pathway through downstream MAPK/extracellular signal-regulated kinase kinase (MEK) antagonism similarly promoted IGF-driven pAkt and synergism with IGF-IR inhibition. Mechanistically, we find that inhibition of the MAPK pathway circumvents a negative feedback loop imposed on the IGF-IR- insulin receptor substrate 1 (IRS-1) signaling complex, a molecular scenario that parallels the negative feedback loop between mTOR-p70S6K and IRS-1 that mediates rapamycin-directed IGF-IR signaling. Collectively, these data show that resistance to inhibition of MEK, mTOR, and EGFR is associated with enhanced IGF-IR-directed Akt signaling, where all affect feedback loops converging at the level of IRS-1.


Nature | 2015

Novel antibody–antibiotic conjugate eliminates intracellular S. aureus

Sophie M. Lehar; Thomas H. Pillow; Min Xu; Leanna Staben; Kimberly Kajihara; Richard Vandlen; Laura DePalatis; Helga Raab; Wouter L. W. Hazenbos; J. Hiroshi Morisaki; Janice Kim; Summer Park; Martine Darwish; Byoung-Chul Lee; Hilda Hernandez; Kelly M. Loyet; Patrick Lupardus; Rina Fong; Donghong Yan; Cecile Chalouni; Elizabeth Luis; Yana Khalfin; Emile Plise; Jonathan Cheong; Joseph P. Lyssikatos; Magnus Strandh; Klaus Koefoed; Peter S. Andersen; John A. Flygare; Man Wah Tan

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody–antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody–antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


Molecular Cancer Therapeutics | 2010

Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

Elizabeth Buck; Prafulla C. Gokhale; Susan Koujak; Eric J. Brown; Alexandra Eyzaguirre; Nianjun Tao; Maryland Rosenfeld-Franklin; Lorena Lerner; M. Isabel Chiu; Robert Wild; David M. Epstein; Jonathan A. Pachter; Mark R. Miglarese

Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase–AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti–IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti–IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone. Mol Cancer Ther; 9(10); 2652–64. ©2010 AACR.

Collaboration


Dive into the Eric J. Brown's collaboration.

Top Co-Authors

Avatar

Fiona Simpkins

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Erin George

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ryan L. Ragland

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Hyoung Kim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Mark A. Morgan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oren Gilad

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge