Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric M. Karp is active.

Publication


Featured researches published by Eric M. Karp.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Lignin valorization through integrated biological funneling and chemical catalysis.

Jeffrey G. Linger; Derek R. Vardon; Michael Guarnieri; Eric M. Karp; Glendon B. Hunsinger; Mary Ann Franden; Christopher W. Johnson; Gina M. Chupka; Timothy J. Strathmann; Philip T. Pienkos; Gregg T. Beckham

Significance For nearly a century, processes have been used to convert biomass-derived carbohydrates, such as glucose, into fuels and chemicals. However, plant cell walls also contain an aromatic polymer, lignin, that has not been cost-effectively converted into fuels or commodity chemicals. With the intensive development of lignocellulosic biorefineries around the world to produce fuels and chemicals from biomass-derived carbohydrates, the amount of waste lignin will dramatically increase, warranting new lignin upgrading strategies. In nature, some microorganisms have evolved pathways to catabolize lignin-derived aromatics. Our work demonstrates that the utilization of these natural aromatic catabolic pathways may enable new routes to overcome the lignin utilization barrier that, in turn, may enable a broader slate of molecules derived from lignocellulosic biomass. Lignin is an energy-dense, heterogeneous polymer comprised of phenylpropanoid monomers used by plants for structure, water transport, and defense, and it is the second most abundant biopolymer on Earth after cellulose. In production of fuels and chemicals from biomass, lignin is typically underused as a feedstock and burned for process heat because its inherent heterogeneity and recalcitrance make it difficult to selectively valorize. In nature, however, some organisms have evolved metabolic pathways that enable the utilization of lignin-derived aromatic molecules as carbon sources. Aromatic catabolism typically occurs via upper pathways that act as a “biological funnel” to convert heterogeneous substrates to central intermediates, such as protocatechuate or catechol. These intermediates undergo ring cleavage and are further converted via the β-ketoadipate pathway to central carbon metabolism. Here, we use a natural aromatic-catabolizing organism, Pseudomonas putida KT2440, to demonstrate that these aromatic metabolic pathways can be used to convert both aromatic model compounds and heterogeneous, lignin-enriched streams derived from pilot-scale biomass pretreatment into medium chain-length polyhydroxyalkanoates (mcl-PHAs). mcl-PHAs were then isolated from the cells and demonstrated to be similar in physicochemical properties to conventional carbohydrate-derived mcl-PHAs, which have applications as bioplastics. In a further demonstration of their utility, mcl-PHAs were catalytically converted to both chemical precursors and fuel-range hydrocarbons. Overall, this work demonstrates that the use of aromatic catabolic pathways enables an approach to valorize lignin by overcoming its inherent heterogeneity to produce fuels, chemicals, and materials.


Energy and Environmental Science | 2015

Adipic acid production from lignin.

Derek R. Vardon; Mary Ann Franden; Christopher W. Johnson; Eric M. Karp; Michael Guarnieri; Jeffrey G. Linger; Michael J. Salm; Timothy J. Strathmann; Gregg T. Beckham

Lignin is an alkyl-aromatic polymer present in plant cell walls for defense, structure, and water transport. Despite exhibiting a high-energy content, lignin is typically slated for combustion in modern biorefineries due to its inherent heterogeneity and recalcitrance, whereas cellulose and hemicellulose are converted to renewable fuels and chemicals. However, it is critical for the viability of third-generation biorefineries to valorize lignin alongside polysaccharides. To that end, we employ metabolic engineering, separations, and catalysis to convert lignin-derived species into cis,cis-muconic acid, for subsequent hydrogenation to adipic acid, the latter being the most widely produced dicarboxylic acid. First, Pseudomonas putida KT2440 was metabolically engineered to funnel lignin-derived aromatics to cis,cis-muconate, which is an atom-efficient biochemical transformation. This engineered strain was employed in fed-batch biological cultivation to demonstrate a cis,cis-muconate titer of 13.5 g L−1 in 78.5 h from a model lignin-derived compound. cis,cis-Muconic acid was recovered in high purity (>97%) and yield (74%) by activated carbon treatment and crystallization (5 °C, pH 2). Pd/C was identified as a highly active catalyst for cis,cis-muconic acid hydrogenation to adipic acid with high conversion (>97%) and selectivity (>97%). Under surface reaction controlling conditions (24 °C, 24 bar, ethanol solvent), purified cis,cis-muconic acid exhibits a turnover frequency of 23–30 s−1 over Pd/C, with an apparent activation energy of 70 kJ mol−1. Lastly, cis,cis-muconate was produced with engineered P. putida grown on a biomass-derived, lignin-enriched stream, demonstrating an integrated strategy towards lignin valorization to an important commodity chemical.


Green Chemistry | 2015

Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria

Davinia Salvachúa; Eric M. Karp; Claire T. Nimlos; Derek R. Vardon; Gregg T. Beckham

Lignin represents an untapped resource in lignocellulosic biomass, primarily due to its recalcitrance to depolymerization and its intrinsic heterogeneity. In Nature, microorganisms have evolved mechanisms to both depolymerize lignin using extracellular oxidative enzymes and to uptake the aromatic species generated during depolymerization for carbon and energy sources. The ability of microbes to conduct both of these processes simultaneously could enable a Consolidated Bioprocessing concept to be applied to lignin, similar to what is done today with polysaccharide conversion to ethanol via ethanologenic, cellulolytic microbes. To that end, here we examine the ability of 14 bacteria to secrete ligninolytic enzymes, depolymerize lignin, uptake aromatic and other compounds present in a biomass-derived, lignin-enriched stream, and, under nitrogen-limiting conditions, accumulate intracellular carbon storage compounds that can be used as fuel, chemical, or material precursors. In shake flask conditions using a substrate produced during alkaline pretreatment, we demonstrate that up to nearly 30% of the initial lignin can be depolymerized and catabolized by a subset of bacteria. In particular, Amycolatopsis sp., two Pseudomonas putida strains, Acinetobacter ADP1, and Rhodococcus jostii are able to depolymerize high molecular weight lignin species and catabolize a significant portion of the low molecular weight aromatics, thus representing good starting hosts for metabolic engineering. This study also provides a comprehensive set of experimental tools to simultaneously study lignin depolymerization and aromatic catabolism in bacteria, and provides a foundation towards the concept of Lignin Consolidated Bioprocessing, which may eventually be an important route for biological lignin valorization.


Green Chemistry | 2016

Quantification of acidic compounds in complex biomass-derived streams

Eric M. Karp; Claire T. Nimlos; Steve Deutch; Davinia Salvachúa; Robin M. Cywar; Gregg T. Beckham

Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkaline pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here too excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.


Science | 2017

Renewable acrylonitrile production

Eric M. Karp; Todd R. Eaton; Violeta Sànchez i Nogué; Vassili Vorotnikov; Mary J. Biddy; Eric Tan; David G. Brandner; Robin M. Cywar; Rongming Liu; Lorenz P. Manker; William E. Michener; Michelle Gilhespy; Zinovia Skoufa; Michael J. Watson; O. Stanley Fruchey; Derek R. Vardon; Ryan T. Gill; Adam Bratis; Gregg T. Beckham

A sweet source to make acrylonitrile Much of the attention directed toward displacing petroleum feedstocks with biomass has focused on fuels. However, there are also numerous opportunities in commodity chemical production. One such candidate is acrylonitrile, a precursor to a wide variety of plastics and fibers that is currently derived from propylene. Karp et al. efficiently manufactured this compound from an ester (ethyl 3-hydroxypropanoate) that can be sourced renewably from sugars. The process relies on inexpensive titania as a catalyst and avoids the side production of cyanide that accompanies propylene oxidation. Science, this issue p. 1307 Titania catalyzes efficient production of a commodity chemical using an ester sourced from sugars. Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 ± 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Catalytic amino acid production from biomass-derived intermediates

Weiping Deng; Yunzhu Wang; Sui Zhang; Krishna M. Gupta; Max J. Hülsey; Hiroyuki Asakura; Lingmei Liu; Yu Han; Eric M. Karp; Gregg T. Beckham; Paul J. Dyson; Jianwen Jiang; Tsunehiro Tanaka; Ye Wang; Ning Yan

Significance Today, amino acids are primarily manufactured via microbial cultivation processes, which are costly, are time consuming, and require extensive separations processes. As an alternative, chemocatalytic approaches to produce amino acids from renewable feedstocks such as bio-based sugars could offer a rapid and potentially more efficient means of amino acid synthesis, but efforts to date have been limited by the development of facile chemistry and associated catalyst materials to selectively produce α-amino acids. In this work, various α-amino acids, including alanine, leucine, aspartic acid, and phenylalanine, were obtained from both biomass-derived α-hydroxyl acids and glucose. The route bridges plant-based biomass and proteinogenic α-amino acids, offering a chemical approach that is potentially superior to microbial cultivation processes. Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.


Green Chemistry | 2018

In situ recovery of bio-based carboxylic acids

Patrick O. Saboe; Lorenz P. Manker; William E. Michener; Darren J. Peterson; David G. Brandner; Stephen P. Deutch; Manish Kumar; Robin M. Cywar; Gregg T. Beckham; Eric M. Karp

The economics of chemical and biological processes is often dominated by the expense of downstream product separations from dilute product streams. Continuous separation techniques, such as in situ product recovery (ISPR), are attractive in that they can concentrate products from a reactor and minimize solvent loss, thereby increasing purity and sustainability of the process. In bioprocesses, ISPR can have an additional advantage of increasing productivity by alleviating product inhibition on the microorganism. In this work, we developed a liquid–liquid extraction (LLE)-based ISPR system integrated with downstream distillation to selectively purify free carboxylic acids, which were selected as exemplary bioproducts due to their ability to be produced at industrially relevant titers and productivities. Equilibrium constants for the extraction of carboxylic acids into a phosphine-oxide based organic phase were experimentally determined. Complete recovery of acids from the extractant and recyclability of the organic phase were demonstrated through multiple extraction–distillation cycles. Using these data, an equilibrium model was developed to predict the acid loading in the organic phase as a function of the extraction equilibrium constant, initial aqueous acid concentration, pH, organic to aqueous volume ratio, and temperature. A distillation process model was then used to predict the energy input required to distill neat acid from an organic phase as a function of the acid loading in the organic phase feed. The heat integrated distillation train can achieve neat recovery of acetic acid with an energy input of 2.6 MJ kg−1 of acetic acid. This LLE-based ISPR system integrated with downstream distillation has an estimated carbon footprint of less than 0.36 kg CO2 per kg of acetic acid, and provides a green approach to enable both new industrial bioprocesses, and process intensification of existing industrial operations by (1) increasing the productivity and titer of the bioprocess via decreasing end-product inhibition, (2) minimizing downstream separation energy input to less than 20% of the heating value of the product, and (3) generating no waste products.


Green Chemistry | 2018

Demonstration of parallel algal processing: production of renewable diesel blendstock and a high-value chemical intermediate

Eric P. Knoshaug; Ali Mohagheghi; Nick Nagle; Jonathan J. Stickel; Tao Dong; Eric M. Karp; Jacob S. Kruger; David G. Brandner; Lorenz P. Manker; Nick A. Rorrer; Deb A. Hyman; Earl Christensen; Philip T. Pienkos

Co-production of high-value chemicals such as succinic acid from algal sugars is a promising route to enabling conversion of algal lipids to a renewable diesel blendstock. Biomass from the green alga Scenedesmus acutus was acid pretreated and the resulting slurry separated into its solid and liquor components using charged polyamide induced flocculation and vacuum filtration. Over the course of a subsequent 756 hours continuous fermentation of the algal liquor with Actinobacillus succinogenes 130Z, we achieved maximum productivity, process conversion yield, and titer of 1.1 g L−1 h−1, 0.7 g g−1 total sugars, and 30.5 g L−1 respectively. Succinic acid was recovered from fermentation media with a yield of 60% at 98.4% purity while lipids were recovered from the flocculated cake at 83% yield with subsequent conversion through deoxygenation and hydroisomerization to a renewable diesel blendstock. This work is a first-of-its-kind demonstration of a novel integrated conversion process for algal biomass to produce fuel and chemical products of sufficient quality to be blend-ready feedstocks for further processing.


Current Opinion in Biotechnology | 2016

Opportunities and challenges in biological lignin valorization.

Gregg T. Beckham; Christopher W. Johnson; Eric M. Karp; Davinia Salvachúa; Derek R. Vardon


ACS Sustainable Chemistry & Engineering | 2014

Alkaline Pretreatment of Corn Stover: Bench-Scale Fractionation and Stream Characterization

Eric M. Karp; Bryon S. Donohoe; Marykate H. O’Brien; Peter N. Ciesielski; Ashutosh Mittal; Mary J. Biddy; Gregg T. Beckham

Collaboration


Dive into the Eric M. Karp's collaboration.

Top Co-Authors

Avatar

Gregg T. Beckham

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Davinia Salvachúa

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Derek R. Vardon

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Claire T. Nimlos

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lorenz P. Manker

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mary J. Biddy

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robin M. Cywar

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher W. Johnson

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

David G. Brandner

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey G. Linger

National Renewable Energy Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge